Adobe Type 1
Font Format

Adobe Systems Incorporated

A
vy

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts « Menlo Park, California « New York
Don Mills, Ontario « Wokingham, England « Amsterdam
Bonn ¢ Sydney * Singapore * Tokyo « Madrid « San Juan

Library of Congress Cataloging-in-Publication Data

Adobe type 1 font format / Adobe Systems Incorporated.
p. cm

Includes index

ISBN 0-201-57044-0

1. PostScript (Computer program language) 2. Adobe
Type 1 font (Computer program) |. Adobe Systems.
QA76.73.P67A36 1990
686.2'2544536—dc20 90-42516

Copyright © 1990 Adobe Systems Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated and Addison-Wesley, Inc.

Printed in the United States of America.
Published simultaneously in Canada.

The information in this book is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Adobe
Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in this book. The software
described in this book is furnished under license and may only be used or copied
in accordance with the terms of such license.

Please remember that existing font software programs that you may desire to
access as a result of information described in this book may be protected under
copyright law. The unauthorized use or modification of any existing font software
program could be a violation of the rights of the author. Please be sure you obtain
any permission required from such authors.

PostScript, the PostScript logo, Display PostScript, Adobe, and the Adobe logo are
trademarks of Adobe Systems Incorporated registered in the U.S. Adobe Type
Manager is a trademark of Adobe Systems Incorporated. IBM is a registered trade-
mark of International Business Machines Corporation. Macintosh and
LaserWriter are registered trademarks of Apple Computer, Inc. Helvetica and
Optima are trademarks of Linotype AG and/or its subsidiaries. ITC Stone is a reg-
istered trademark of International Typeface Corporation. Other brand or product
names are the trademarks or registered trademarks of their respective holders.

3456789-MU-96959493
Third printing, February 1993, Version 1.1

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

Contents

Chapter 1: INtroducCtioncooiviiiiiiiiiie e 1
What Is a Type 1 FOnt Program?.........cccoveiiieiiieeiiieeiiiiciine e eeeeeenns 2
What This DOCUMENT DOES.........cuviiiiiiiiiiiiiiiiiiiiiiiieeee e 3
Versions and Compatibilitycccovvviiiiiiii e 4
Copyrights for Type 1 FONt Programs..........cccoeuvviiiiiineeeeeeeeeennnnnnnns 5
Chapter 2: Font Program Organization...........ccccccceeviveeeeeeeeeennnnnnnn, 7
Building Characters...........uuuciiiiiie i e e eeeeaens 7
(7] o 1 i B TTod 1 [0 g - 1Y/ 9
Explanation of a Typical Font Program............ccccvvvviiiineieeeeeennnns 10
Inside the Encrypted POrtion.........cccoooeeeeeviieeiiciin e, 14
Unique Identification Numbers and Font Names..........cccccco...... 17
Chapter 3: Character Outline Considerationseeeeeeeeeenn. 21
Character Geographycceeiieeeeiieeci e 21
Alignments and OVErshoOtSccccvviviiiiiiiiin e 23
Character Coordinate SPacCeuviviieeeeieeeeeicee e e e 25
Character Paths..........ooooii e 26
Direction Of PathSuuuiiiiiiiiiiiiiiiiiieeeeeeee e 27
OVverlapping PathS..........iiii e 28
Chapter 4: Technical Design Considerationscccceeeevvevvvvnnnnn. 29
POINTS at EXErEIMIES. ..ot 29
Tangent CONtINUILY ..., 30
CONCISENESS c.eiieieiee e 31
CONSISTENCY .o 32

51
52
5.3
54
55
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3

8.1
8.2
8.3
8.4

9.1
9.2

10.1
10.2
10.3

Chapter 5: Private DIiCtIONArYuuuiiieeeeiiieiiiiiee e 35

Declarative HiNtS........ooooiiiii e 35
Font Level HINTS. ... 36
BIUBVAIUES ... e 36
OthErBIUES. 38
FamilyBlues and FamilyOtherBlues...........cccccoooviiiiiiiiiiie e, 38
BIUESCAl. ... 39
BIUESNITE ... 40
2] LU 1= U 27 41
Stem Width Informationcccooooiiiii 42
FOFCEBOIA. ... e 43
LanNQUAGEGTOUP ... eiietie ettt e e eeeaa e 44
ENIV e 45
Compatibility ENTrIeS.......cooeiiiiiiieii e 45
EXPaNSIONFACTOr.cciiiiiiiiiii e 45
Chapter 6: CharStrings DICtionary............ccooeeeiiiiiiniieeeeeeeeeiiiin, 47
Charstring ENCOAINGcuuiiiiiiiii i 47
Charstring Number ENcoding..........ccooveviiiiiiiiiiii e 48
Charstring Command ENcoding........ccccoevviiieiiiiiiiiiiiiie e 48
Charstring Command LiSt............cooiiiiiiiiiiii e 49
Character Level HINTS.......ooooiiiiiiiii e 56
Encoding EXample ..o 58
Chapter 7: ENCrYPHIONoii i 61
Encryption Method.............iiiiiiii e, 61
€EXEC ENCIYPUIONuieiiii e 63
Charstring ENCryption ... 64
Chapter 8: UsiNng SUDIOULINESuuvuiiiiiiiiiiiiiiii e 67
Changing Hints Within a Charactercccccooeiiiiiiiiiiiiiiiinnnnn, 69
(DT 0) S TTet Ao o 13 PP PPPPPPPRRT 71
Bl X it 72
First FOUr SUDIS ENTrieS....coiiiiiie e 78
Chapter 9: Special Font Organizations............ccccuvvvieviiieeeeeeeeeeennn. 79
SYNTNEtiC FONTS ..oooviiiiii e 79
HyDBrid FONTS oo 80
Chapter 10: Adobe Type Manager Compatibility.............ccc.oeeeeee. 83
SIMPIE ValUEBS ... e 84
F N - |V TSP PP 84
G40 (o ISP 85

Adobe Type 1 Font Format

Appendix 1:
Appendix 2:
Appendix 3:

Appendix 4:

Private Dictionary ENtriesccccoooveviiiieeviineeeeeenn, 87
Charstring Command Values.............cccceeeeevvvveeeeennn. 89
OtherSubrs Programsccccovevieieiiiiiiieeeeicee e, 91
(01 7= T 0T 1< 97
... 99

Contents iii

iv Adobe Type 1 Font Format

CHAPTER 1

Introduction

This document describes the organization of the Adobe Type 1
font format and how to create a Type 1 font program. A Type 1
font program is actually a special case of a PostScript® language
program. The PostScript interpreter renders the font intelligently,
in a device-independent manner. This allows a font developer to
create one font program that can be rendered on a wide variety
of devices and at many different resolutions.

e A Type 1 font program consists of a clear text (ASCII) portion,
and an encoded and encrypted portion.

e The PostScript language commands used in a Type 1 font pro-
gram must conform to a much stricter syntax than do
“normal” PostScript language programs.

e Type 1 font programs can include special “hints” that make
their representation as exact as possible on a wide variety of
devices and pixel densities.

This document explains the required contents of the clear and
encrypted portions of a Type 1 font program, reveals the font
encryption and decryption algorithms, provides syntax informa-
tion, and explains how to declare hints when creating Type 1
font programs.

e Chapter 1 discusses some background issues about Type 1 font
programs and their differences from Type 3 font programs.

e Chapter 2 explains the different parts of the PostScript lan-
guage program that makes up a font program.

e Chapter 3 describes general terminology and how the different
features that make up the characters in a font program are con-
structed.

2

1.1

* Chapter 4 provides several tips on managing the technical part
of design aesthetics.

* Chapter 5 explains the contents of the Private dictionary.

* Chapter 6 explains the contents of the CharStrings dictionary,
explains charstring number and command encoding, and lists
the commands used in Type 1 charstrings and their encodings.

» Chapter 7 discloses the method of encrypting and decrypting
Type 1 font programs.

* Chapter 8 shows how subroutines can be used for font pro-
gram space requirement reduction and hint substitution.

* Chapter 9 describes the special organization of synthetic and
hybrid font programs.

e Chapter 10 provides necessary information to ensure compat-
ibility with Adobe Type Manager™ (ATM™) software.

* The appendices contain lists of dictionary entries, commands,
and PostScript language code that you may wish to include in
your own font programs.

What Is a Type 1 Font Program?

The PostScript language has changed the way computers display
and print documents. This language unifies text and graphics by
treating letter shapes as general graphic objects. Since letters are
used so frequently in printed images, the PostScript language has
special operators to handle collections of letter shapes conve-
niently. These collections are called fonts; each font usually
consists of letters and symbols whose shapes share certain stylis-
tic properties.

The complete specification for the PostScript language, including
information on how font programs are organized, appears in the
PostScript Language Reference Manual, published by Addison-
Wesley. In addition to the font format that is described in the
PostScript Language Reference Manual (commonly known as “Type
3 font format” or “user-defined font format”), the PostScript
interpreter also accepts a font format, called the Type 1 font
format, that is not part of the PostScript language definition and
is not fully described in the PostScript Language Reference Manual.

Adobe Type 1 Font Format

Type 1 font programs have several advantages over Type 3 font
programs.

* Type 1 font programs are more compact.

* The PostScript interpreter uses special rasterization algorithms
for Type 1 font programs that result in better looking output—
especially at small sizes and low resolutions.

* Type 1 font programs contain hints that indicate special fea-
tures of character shapes not directly expressible by the basic
PostScript language operators.

The special rasterization algorithm and the hints for the Type 1
font format that the rasterization algorithm uses are directed at
features common to collections of letter shapes. The special ras-
terization algorithm and the hints aim to preserve baselines,
letter heights, stem weights, and other such features. Thus, the
Type 1 format is excellent for characters intended to be read as
text. Company logotypes and other symbols are candidates for
the Type 1 font format only insofar as they are letter-like. While
a graphic symbol may benefit from being made into a character
in a font, extremely complicated graphic constructions are better
served by the Type 3 font format as described in the PostScript
Language Reference Manual.

1.2 What This Document Does

The Type 1 font format is a subset (and extension) of the Post-
Script language, with its own syntactical rules. This document
explains how to create a Type 1 font program that will run prop-
erly in the PostScript interpreter and with other Type 1 font
rendering software such as Adobe Type Manager. It also gives a
developer the information necessary to decrypt and understand
the organization of existing Type 1 font programs (such as the
font software included in the Adobe® Type Library). This docu-
ment assumes familiarity with the PostScript Language Reference
Manual, especially the information about font programs.

Note Although Type 1 font format elements are fully explained here, this
document does not include any algorithms that achieve the results
specified; for example, it does not include details of the rendering algo-
rithm used by Adobe’s PostScript interpreter.

Chapter 1: Introduction 3

4

13

Some personal computer file systems require special formats for
disk files that differ from the ASCII text format described here.
The Apple Macintosh® and the IBM® PC are two such systems.
This document does not discuss the details of formats used by
such file systems; these formats can be derived from the ASCII
font program information described here. Special file formats for
these and other file systems are discussed in Technical Note
#5040, Supporting Downloadable PostScript Fonts, available from
the Adobe Systems developer support group.

Versions and Compatibility

The PostScript interpreter has undergone continual enhance-
ment since its debut in late 1984. During this time, Adobe
Systems has changed both the PostScript interpreter implemen-
tation and the features of the Type 1 font format. These changes
are generally compatible with all versions of the PostScript inter-
preter.

There are several notes in this document about how specific font
program features are treated in older versions of the PostScript
interpreter. In some cases, information that was required by older
versions of the PostScript interpreter for optimal rendering is no
longer needed because more sophisticated algorithms are avail-
able in newer versions of the interpreter. In general, the
rendering of typefaces described in the Type 1 font format will
continue to look better with succeeding versions of the PostScript
interpreter (without changing existing Type 1 font software at all)
as Adobe Systems continues improving the PostScript interpreter.

Any future extensions of the Adobe Type 1 font format will be
designed so that they may be ignored by the current generation
of interpreters. These new features will often take the form of new
dictionary entries; other extensions may involve subroutine calls
that can be skipped safely. As long as interpreters for Type 1 font
software are written to ignore such possible future features, these
features will not cause trouble. Future extensions will be thor-
oughly described in revised versions of this document.

Adobe Type 1 Font Format

1.4

Some Type 1 font rendering software (such as the Adobe Type
Manager product) take advantage of a particular stylized use of
the PostScript language. As a result, a Type 1 font program must
also adhere to these PostScript language usage conventions. The
language resulting from these conventions is considerably more
restricted than the PostScript language; a Type 1 font program
can be read and executed by a PostScript interpreter, but not all
PostScript language usage is acceptable in a Type 1 font program.
These restrictions will be noted wherever necessary in this docu-
ment, particularly in Chapter 10, “Adobe Type Manager
Compatibility.”

Copyrights for Type 1 Font Programs

Since Type 1 fonts are expressed as computer programs, they are
copyrightable as is any other computer software. For some time,
the copyright status of some types of typeface software was
unclear, since typeface designs are not copyrightable in the
United States. Because Type 1 fonts are computer programs rather
than mere data depicting a typeface, they are clearly copyright-
able.

A copyright on a Type 1 font program confers the same protec-
tion against unauthorized copying that other copyrightable
works, including computer software, enjoy. The ideas expressed
by copyrighted works are not protected; only the particular
expression is. In the case of Type 1 font programs, the typeface
shapes are not protected, but the program text is. A copyright on
a Type 1 font program that generates a particular typeface does
not preclude anyone from independently creating a different
program for that same typeface.

The activity prevented by copyright is copying. Copying includes
obvious acts such as verbatim copying and distribution. It also
covers less obvious activities such as modification and translation
into different forms. If the copyrighted work, in this case a Type
1 font program, is the source of these activities, then the activities
are illegal if not authorized by the copyright holder.

Chapter 1: Introduction 5

6

Adobe Systems’ Type 1 font programs are licensed for use on one
or more devices (depending on the terms of particular licenses).
These licenses would permit the use of a licensed program in a
system that translates a Type 1 font program to some other
format in the process of rendering, as long as a copy of the pro-
gram (even in translated form) is not produced.

The personal computer software industry has benefitted greatly
from copyright protection. Competition is keen, and users bene-
fit from the efforts software developers have found to be
worthwhile. Copyright protection gives the developer of a Type
1 font program the incentive to create excellent typeface pro-
grams. In turn, the user of Type 1 font programs can expect to
have available the finest typeface software to choose from.

Adobe Type 1 Font Format

21

CHAPTER 2

Font Program
Organization

A font program written in the PostScript language is a program
that is an organized collection of procedures describing character
shapes. Elements of this collection are accessed by character code
with the show operator, as described in the PostScript Language
Reference Manual. Different font programs contain different
amounts of diverse information, this information is collected
into a dictionary. The dictionary contains required and optional
entries, and is the data object that the PostScript interpreter ref-
erences for all font operations.

Building Characters

Every Type 3 (user-defined) font program requires a font dictio-
nary entry named BuildChar, as described in the PostScript
Language Reference Manual. The value associated with this name is
a procedure that the PostScript interpreter calls whenever it needs
to have a character built. The Type 3 BuildChar procedure is free
to use whatever method it chooses to supply the PostScript inter-
preter with graphics commands to paint the character associated
with a character code. Generally, BuildChar procedures operate
by selecting a particular procedure for building a character from
an array or from a dictionary of such procedures stored in the
font dictionary.

In contrast, Type 1 font programs implicitly reference a special
BuildChar procedure called Type 1 BuildChar that is internal to the
PostScript interpreter. Consequently, there is no explicit entry
named BuildChar in a Type 1 font dictionary; the fact that it is a
Type 1 font program implies that it uses Type 1 BuildChar. In
essence, the description of the Type 1 font format is the explana-
tion of the functions of Type 1 BuildChar.

8

Note

Type 1 BuildChar begins by using the character code as an index
into the Encoding array in the font dictionary to obtain the name
of the character to be built. This step is explained in the PostScript
Language Reference Manual; among other advantages, it enables a
user to re-encode a Type 1 font program by changing the
Encoding array without changing anything else. Type 1 Build-
Char then uses the name of the character to be built as a key in
the CharStrings dictionary (contained in the font dictionary) to
obtain a binary string. The string is an encoded and encrypted
representation of a PostScript language program for that charac-
ter’s outline. Finally, Type 1 BuildChar calls a special version of
stroke or fill, depending on the value of PaintType in the font dic-
tionary, to create the character.

Because Type 1 font programs were originally produced and were care-
fully checked only within Adobe Systems, Type 1 BuildChar was
designed with the expectation that only error-free Type 1 font programs
would be presented to it. Consequently, Type 1 BuildChar does not pro-
tect itself against data inconsistencies and other problems. For
example, Type 1 BuildChar does not issue error messages. As long as
you follow the rules and suggestions given in this manual, your font
programs will work. Deviations from the suggestions in this document
are somewhat risky. Many problems are likely to be caught with an
invalidfont error; more subtle problems may result in incorrect behavior
by Type 1 BuildChar. Of course, any Type 1 font program produced
should be thoroughly tested at many sizes and rotations, on several
devices, and with Adobe Type Manager software before release.

Adobe Type 1 Font Format

2.2 Font Dictionary

Constructing a Type 1 font program means constructing a special
type of font dictionary. As with any PostScript language data
object, a PostScript language program constructs this dictionary.
A list of the required entries in a Type 1 font program is given in
the PostScript Language Reference Manual, and includes the
CharStrings and Private dictionaries, which are required in every
Type 1 font program.

Figure 2a is a conceptual overview of a Type 1 font program,;
figure 2b shows the dictionary structure that the font program
creates when it executes. The items contained in the figures are
explained in this document.

Figure 2a. Organization of a Type 1 font program

Type 1 Font Program

%!FontTypel-1.0
ASCII — :
eexec
/Private dictionary

/OtherSubrs
/Subrs 43 array
dup 0 15 RD ~15~binary~bytes~ ND |- Binary only
eexec — : charstring

jon | [o-- S """ oS- oo ---—--—-——-— encryption
encryption /CharStrings 190 dict dup begin yp
/.notdef 9 RD ~9~binary~bytes~ ND }

. Binary only
/A 186 RD ~186~binary~bytes~ ND

charstring
encryption

end end readonly put noaccess put

dup /FontName get exch definefont pop
mark currentfile closefile
00000000000000000

ASCll ;
00000000000000000

cleartomark

Chapter 2: Font Program Organization 9

10

font dictionary

/Fontinfo dictionary

Figure 2b. Typical dictionary structure of a Type 1 font program

/Fontinfo dictionary

/Private dictionary

/version string /RD procedure
/FontName name - -
- /Notice string /ND procedure
/Encoding array -
- - /FullName string /NP procedure
/PaintType integer - -
- /FamilyName string /Subrs array
/FontType integer - -

- /Weight string /OtherSubrs array
/FontMatrix array - - -
FortBBox arra /ItalicAngle number /UniquelD integer

- - y /isFixedPitch boolean /BlueValues array
/UniquelD integer - -
- — /UnderlinePosition number /OtherBlues array
/Metrics dictionary - - -
/Strokewidih b /UnderlineThickness number /FamilyBlues array
rokeWi number
- — /FamilyOtherBlues array
/Private dictionary JBlueScale number
. — u u
//CFT;rStrlngs <f:1|ctt||o|:r)1ary /CharStrings dictionary /BlueShift integer
on
(/FID) > - /BlueFuzz integer
/A charstring
- /StdHW array
/B charstring
: : /StdvW array
' — /StemSnapH array
/.notdef charstring
/StemSnapV array
/ForceBold boolean
/LanguageGroup integer
/password integer
/lenlv integer
/MinFeature array
/RndStemUp boolean

2.3 Explanation of a Typical Font Program

The program code that follows is a generalized example for a typ-
ical Adobe Type 1 font program. It is derived from the Symbol
font program. Because many parts of a font definition are repeti-
tive, much of the repetition in the following example has been
omitted. The omitted portions are documented with comments.
Items not explicitly discussed here are covered in the PostScript

Language Reference Manual.

Adobe Type 1 Font Format

Example 1.

%!FontTypel-1.0: Symbol 001.003
%%CreationDate: Thu Apr 16 1987
%%VMusage: 27647 34029

% Copyright (c) 1985, 1987 Adobe Systems
% Incorporated. All rights reserved.

11 dict begin

/Fontinfo 8 dict dup begin

/version (001.003) readonly def

/FullName (Symbol) readonly def
/FamilyName (Symbol) readonly def
/Weight (Medium) readonly def

/ItalicAngle O def

/isFixedPitch false def

/UnderlinePosition -98 def
/UnderlineThickness 54 def

end readonly def

/FontName /Symbol def

/PaintType O def

/FontType 1 def

/FontMatrix [0.001 0 0 0.001 0 0] readonly def
/Encoding 256 array

0 1 255 {1 index exch /.notdef put } for

dup 32 /space put

% ...

% . . . repetitive assignments to Encoding array omitted
%...

dup 254 /bracerightbt put

readonly def

/FontBBox {-180 -293 1090 1010} readonly def
/UniquelD 6859 def

currentdict end

currentfile eexec
05f3acf73b42a65ec11al12df4c6e26
5306f37b5075f007986cdacc4cd13a
49703465ba20c83c12707f179c0586
3d27adc72767ec06a47e733401fa8d

% ...

% . . . thousands of eexec-encrypted bytes omitted
%...
000000000000000000000000000000
000000000000000000000000000000

% ...

% . .. many zeros omitted

% ...
000000000000000000000000000000
000000000000000000000000000000
cleartomark

Chapter 2: Font Program Organization

11

12

Note

As seen in the preceding example, a Type 1 font program is a pro-
gram written in the PostScript language. It begins with
comments, some of which should be self-explanatory.

All Type 1 fonts must begin with the comment:
%!

This enables a file containing a PostScript program to be easily
identified as such. It is important that every Type 1 font pro-
gram—indeed, every PostScript language program—start with a
“%!” comment; otherwise, it may not be given the appropriate
handling in some operating system environments.

The remainder of the first line (after the “%!”) should identify the
file as a conforming Type 1 font program. A Type 1 font program
conforms to the specified version of the Type 1 font format if the
first line consists of the following characters:

%!FontTypel-SpecVersion: FontName FontVersion

where the number SpecVersion is the version of the Adobe Type 1
font format to which the font program conforms (this document
describes Version 1.1 of the Adobe Type 1 Font Format), FontName
is the name of the font understood by the PostScript interpreter,
and Font\ersion is the version number of the font program. For
example, the font program shown as an example in this docu-
ment begins with:

%!FontTypel-1.0: Symbol 001.003

Application programs should also look for the form used by font pro-
grams from Adobe: “%!PS-AdobeFont-1.0: FontName version”.

The comment:

%%VMusage

is useful for application programs, not for the PostScript inter-
preter itself. The application program can use the information
before downloading a font program to decide whether a given
PostScript interpreter has enough VM storage remaining to
accommodate this particular font program. A Type 1 font pro-
gram manufacturer can determine the VM usage values by
issuing a vmstatus command before and after downloading a
font, and then again after downloading the same font a second
time. The difference between the first and second numbers
(before and after the first downloading) yields the second argu-

Adobe Type 1 Font Format

ment in the %%VMusage comment; the difference between the
second and third (after the second download) give the first argu-
ment.

The larger number on this line indicates the amount of VM stor-
age this font program will consume if it is the first to be
downloaded; the smaller number indicates the minimum
amount of VM this font program will need. The numbers are not
equal because some items, such as names, can share VM storage
in some versions of the PostScript interpreter. In synthetic fonts,
these numbers can be very different from each other. See section
9.1, “Synthetic Fonts,” for more information.

After the comments, the program allocates a dictionary with a
capacity of 11 elements; this dictionary will become a font dictio-
nary. The program inserts eight items (Fontinfo, FontName,
PaintType, FontType, FontMatrix, Encoding, FontBBox, and
UniquelD) into the dictionary. The 1000 to 1 scaling in the Font-
Matrix as shown is typical of a Type 1 font program and is highly
recommended.

Also highly recommended is that the values for the FontBBox be
as accurate as possible. The PostScript interpreter uses this infor-
mation in making decisions about font caching and clipping. The
FontBBox must be accurate (not all zeros) if the font program uses
the seac command for creating accented characters. In this situ-
ation, an accurate FontBBox is critical to forming unclipped
characters. If the font program does not make use of accented
characters defined by the seac command, then FontBBox can
consist of all zeros.

FontType must be set equal to 1 for all Type 1 font programs.

UniquelD is a value important to font identification and in help-
ing the PostScript interpreter properly cache characters between
jobs. UniquelD is discussed later in this chapter.

Next in the example program is the Encoding array. The
Encoding array determines which character codes are associated
with which character names in the font program. This character
encoding can be changed without altering anything else in the
font program.

Chapter 2: Font Program Organization 13

14

24

The clear text portion of the font program is followed by an
eexec-encrypted portion. The clear text portion ends with an
invocation of the eexec operator, after which the font program
contains ASCII hexadecimal encrypted text:

currentfile eexec
05f3acf73b42a65ecllal2df4c6e26
5306f37b5075f007986¢cdacc4cd13a

... thousands of eexec-encrypted bytes left out . . .

When eexec begins operation, it performs a begin operation on
systemdict to ensure that the operators that follow will be taken
from systemdict. When eexec terminates, it automatically per-
forms an end operation to remove the systemdict that it begins
here.

The text encrypted by eexec must be followed by 512 ASCII zeros.
There may be white space characters (blank, tab, carriage return
or line feed) interspersed among these zeros. Some zeros will be
consumed by the eexec command; the remainder will be
encountered by the PostScript interpreter and pushed onto the
operand stack. A mark operator within the encrypted text marks
the operand stack, and the final cleartomark operator cleans the
mark and the extraneous zeros off the operand stack.

Inside the Encrypted Portion

In the encrypted portion of the font program are the CharStrings
and the Private dictionaries. The CharStrings dictionary contains
the encoded commands that draw the outlines of the characters
included in the font. The Private dictionary contains hints and
subroutines. The hints in the Private dictionary apply to the
entire font. The Private dictionary may also contain various Post-
Script language procedures that can modify the behavior of the
font program in some versions of the PostScript interpreter. See
Chapter 5, “Private Dictionary,” for more information about the
hinting system and Type 1 font format hints.

The character string values in the CharStrings dictionary must be
encoded and encrypted; decrypting and decoding the string is an
intrinsic part of Type 1 BuildChar. These encoded and encrypted
character outline strings are called charstrings. When decoded,
each charstring bears a resemblance to a PostScript language pro-
gram, in that an operand stack and postfix syntax are used.
However, the set of commands included in the charstrings is spe-
cial to Type 1 BuildChar, and their operands are restricted in type

Adobe Type 1 Font Format

Note

and range. The operand stack for charstring operation is separate
from the general PostScript language operand stack. Some com-
mands are similar to built-in operators in the PostScript language.
Other commands, such as those that give hints to the character
rendering algorithm, are unique to Type 1 BuildChar’s input
language.

The word “encoding” is used to describe two situations in the Type 1
font format. Charstring encoding refers to the particular form of char-
string contents, with commands and operands represented by short
code sequences. Encoding vector refers to an assignment of character
names to character codes for use in character identification to the show
command. The meaning of the word “encoding” used in various places
in this document should be clear from its context.

By decrypting the eexec-encrypted portion of the Symbol font
program, the following simplified code appears. In this code, a
sequence of n binary bytes is indicated by the form
~n~binary~bytes~.

Example 2.

dup /Private 8 dict dup begin

/RD {string currentfile exch readstring pop} executeonly def
/ND {noaccess def} executeonly def

/NP {noaccess put} executeonly def
/BlueValues [-17 0 487 500 673 685] def
/MinFeature {16 16} def

/password 5839 def

/UniquelD 6859 def

/Subrs 43 array

dup 0 15 RD ~15~binary~bytes~ NP

% ...

% . . . 41 subroutine definitions omitted
% ...

dup 42 23 RD ~23~binary~bytes~ NP
ND

2 index /CharStrings 190 dict dup begin
/Alpha 186 RD ~186~binary~bytes~ ND
%...

% . . . 188 character definitions omitted
%...

/.notdef 9 RD ~9~binary~bytes~ ND

end

end

readonly put

noaccess put

dup /FontName get exch definefont pop
mark currentfile closefile

Chapter 2: Font Program Organization 15

16

Note

Two additional items (Private and CharStrings) are added to the
font dictionary. In the example font program, Private is associ-
ated with a dictionary of eight items, RD, ND, NP, BlueValues,
MinFeature, password, UniquelD, and Subrs. CharStrings is asso-
ciated with a dictionary of 190 items in the example; each of
these items in turn associates a character name (such as Alpha)
with an encoded and encrypted charstring. Type 1 BuildChar
interprets each charstring when the character is shown for the
first time. The Subrs entry in the Private dictionary contains
charstring portions that can be referenced multiple times by sub-
routine calls from other charstrings.

Charstrings in actual Type 1 font programs use the RD, ND, and
NP PostScript language procedures shown in the preceding exam-
ple to reduce the size of the font program. In some fonts, these
names might be defined in userdict, or they might be named -|,
|-, and | respectively (constructed with hyphen and vertical bar
characters) in the Private dictionary. Note that a character name
in the CharStrings dictionary cannot be either RD or ND or what-
ever names are substituted for these names, because that would
redefine these critical procedures.

While ND and NP are merely abbreviations that save some bytes
of PostScript language code each time they are used, RD is more
complicated. Each use of RD is followed by exactly one blank
character followed by a sequence of binary bytes that are the
charstring contents. This charstring is not given in ASCII hexa-
decimal form—it is binary. RD itself is preceded by an integer that
tells exactly how many binary bytes follow the RD (not including
the single blank that follows the RD).

The RD, NP, and ND functions must be implemented by PostScript lan-
guage procedures and must be invoked by a single name as shown in
the program example. These functions may not be implemented by
equivalent in-line code.

Both the Private dictionary and all of the charstrings are given
the noaccess attribute. Thus, a user of the PostScript interpreter
cannot read or write their contents. This is not necessary in a
Type 1 font program; it has been included in this particular exam-
ple only to protect the contents of these items from casual
reading. Note that while a user of the PostScript interpreter
cannot access these items, the PostScript interpreter itself (partic-
ularly, Type 1 BuildChar) can access them.

Adobe Type 1 Font Format

Note

2.5

Finally, the definefont operator makes the first dictionary into a
font dictionary. It adds one more item, FID, to this font dictio-
nary. The mark is provided so that the cleartomark operator that
follows the 512 zeros can remove extra zeros from the operand
stack.

The final currentfile closefile sequence terminates the operation
of the eexec command. When eexec terminates, it automatically
performs an end operation to remove the systemdict that it
began.

The preceding example shows a character named *“.notdef” defined in
the CharStrings dictionary. A Type 1 font program must have a
“.notdef” character defined in its CharStrings dictionary, even if it is
not referenced by the encoding vector.

Unique Identification Numbers and Font Names

The UniquelD is an optional entry that helps identify the font
program to the interpreter. Its primary purpose is uniquely iden-
tifying bitmaps already created and cached from that font
program; having a UniquelD allows the PostScript interpreter to
cache bitmaps across jobs.

The UniquelD is specified with the entry name UniquelD both in
the font dictionary and in the Private dictionary. Type 1 font dic-
tionaries presented to the definefont operator that differ in any
way except in the values of FontName, Fontinfo, or Encoding
must have different UniquelD values. If the UniquelD values are
not present in both the font dictionary and Private dictionary, or
if they have different values, then the font program is treated by
the interpreter as if it had no UniquelD at all: caching will then
be efficient for the immediate job, but the interpreter will not
cache bitmaps for that font across jobs.

If the UniquelD value in a font program is not unique, a subse-
quent application referencing a font program with the same
UniquelD can inadvertently obtain bitmaps that were cached by
the previous job. This is a particular problem for service bureaus
where the cached characters might be written to disk and remain
there during subsequent jobs.

Adobe Systems maintains a registry of UniquelD numbers and

font names for font programs created in the Type 1 format. The
UniquelD number is an integer in the range from 0 to 16,777,215

Chapter 2: Font Program Organization 17

18

(2%4-1). Each FontType has its own independent space of
UniquelD values. Therefore, a Type 1 and a Type 3 font program
could have the same UniquelD number and be safely used
together without causing caching conflicts.

The numbers from 4,000,000 to 4,999,999 form an “open” range
for Type 1 font programs used in a “controlled environment.” An
individual, company, or service bureau can create its own font
programs—such as font programs with extra characters, with
logos, or with transformations—and assign numbers from the
open range. ID conflicts should not occur if all other font pro-
grams in use are from vendors whose UniquelD numbers have
been allocated by Adobe Systems.

Font vendors who plan to widely distribute Type 1 font programs
should obtain a UniquelD number for each font program. In
return for receiving UniquelD numbers, the vendor must agree to
provide Adobe Systems with AFM (Adobe Font Metric) files for all
font programs released. This is necessary to register the font
name and to keep the database of font names and UniquelD
numbers accurate and up-to-date. If you wish to obtain more
information or to request UniquelD numbers for Type 1 font pro-
grams, please write to:

UniquelD Coordinator

Adobe Systems Incorporated
P.O. Box 7900

Mountain View, CA 94039-7900

Not all Type 1 font programs require a UniquelD. To determine
whether a font program needs one, consider the following
options:

* Published or widely-distributed font programs:
A vendor with a Type 1 font program that will be published or
distributed should obtain a UniquelD number assignment
from Adobe Systems and register the font program’s name.

e Limited-distribution or private-use font programs:

Whether a UniquelD is required depends on one of two possi-

bilities:

1. Controlled environment: If the font program is going to be
used only within a single department or company and the
user would like bitmaps created by the font program to
remain cached across subsequent jobs, insert a randomly-
selected number from the “open” range in both of the
dictionaries.

Adobe Type 1 Font Format

2. Uncertain distribution: If the font program is to be sent to a
service bureau or if the distribution and printing environ-
ment is uncertain, Adobe encourages you not to use any
UniquelD number. Within a given job, caching still per-
forms well, but the chance of UniquelD conflict with other
jobs is eliminated.

Type 1 font programs should also have unique names. To name a
font program, use the definefont operator. In the example above,
the value associated with FontName is the argument for the
definefont operator. definefont takes the name and a dictionary,
checks that the dictionary is a well-formed font dictionary, makes
the dictionary’s access read-only, and associates the font program
name with the dictionary in the global dictionary FontDirectory.
(It also inserts an additional entry whose name is FID and whose
value is an object of type fontID; this entry serves internal pur-
poses in the font machinery. For this reason, a font dictionary
presented to definefont must have room for at least one addi-
tional key-value pair.)

However, while the FontName key in the font dictionary should
be the name of the font program, it is not necessarily the name
that identifies the font program to the findfont operator. The
name supplied to the definefont operator is the name understood
by the findfont operator. For this reason, Adobe Systems will also
register font program names as part of the UniquelD number and
font name data base.

Chapter 2: Font Program Organization 19

20 Adobe Type 1 Font Format

3.1

CHAPTER 3

Character Outline
Considerations

Character description is the heart of any Type 1 font program.
Each character shape comprises a path drawn by a series of Post-
Script language programming statements. Each character in a
Type 1 font can consist of no more than one such path. Of course,
this one path may contain several subpaths.

Character Geography

Although there are typographic terms for a wide variety of char-
acter features, discussion here will be limited to those features
relevant to Type 1 font characters and the Type 1 hinting mech-
anism.

The main vertical strokes of a character are generally known as
vertical stems, and the horizontal strokes are known as horizon-
tal stems. Stems can be straight or curved; see Figure 3a that
follows. For example, in a Type 1 font character, the top and
bottom curved strokes of an “O” can be considered horizontal
stems, and the left and right sides can be considered vertical
stems.

In addition to obvious stem-like features of a character, it is also
important to identify serif shapes. For Type 1 hinting purposes,
the serifs on an “I”” are considered horizontal stems. Similarly, the
vertical serifs on the cross stroke of a “T” are considered vertical
stems.

21

22

Figure 3a. Horizontal stems, vertical stems, and serifs

serif horizontal stem
vertical stem ——— vertical stem
serif horizontal stem

The rest of this discussion of character geography applies mainly
to roman alphabet typefaces. While other alphabets (symbol sets
and non-roman alphabets, such as Chinese and Arabic) share
many of these features, a detailed discussion of their differences
is beyond the scope of this document.

Several horizontal measurements help to define a character in the
PostScript language.

* A character’s origin is its initial reference point. The origin is
made to coincide with the current point when the character is
shown.

« Acharacter’s width is a vector, generally horizontal to the right,
from the origin to the coordinate at which the current point
will be set after showing this character.

* The left sidebearing is a vector, generally horizontal to the right,
from the origin to a point whose x coordinate coincides with
the x coordinate of the leftmost filled part of the character.

* The left sidebearing point is the coordinate at which the left side-
bearing vector terminates. The y coordinate of the left
sidebearing point is almost always 0. (There are always excep-
tions in font program design, and there can be conditions
where the y coordinate of the left sidebearing point is not 0—
but very few.) The first point in the defining path is measured
relative to the left sidebearing point; subsequent path coordi-
nates are measured relative to the preceding path coordinate.

Adobe Type 1 Font Format

Figure 3b. Origin, width, left sidebearing and left sidebearing point

character width
Il

- »
,

| |
origin left sidebearing point next character
[RE— origin
left sidebearing

3.2 Alignments and Overshoots

Type 1 font hints include many vertical measurements that apply
to an entire typeface. (Chapter 5, “Private Dictionary,” describes
Type 1 font hints in greater detail.) Some of these measurements
help to accurately represent the slight differences in alignment
between flat characters and round characters. In Type 1 font ter-
minology, the round characters are said to overshoot the flat
characters (at both top and bottom).

Type 1 BuildChar accepts alignment and overshoot information
in pairs of numbers. One number indicates the flat position, or the
y coordinate that flat characters reach; the other number is the
overshoot position, or the y coordinate that curved characters
reach. The pair of numbers is called an alignment zone. The differ-
ence between the numbers in an alignment zone is called the
alignment zone height; this height is typically between 10 and 20
units. All coordinates in these descriptions are in character space
units, and assume the 1000 to 1 character space to user space scal-
ing that is typical of the Type 1 font format. There is one
alignment zone of each type applicable across the entire font pro-
gram. Several alignment zones are illustrated in Figure 3c.

« The baseline is the y coordinate of the typographic baseline of

the font (the line on which most flat characters sit). The base-
line is typically zero.

Chapter 3: Character Outline Considerations 23

The baseline overshoot position is the minimum y coordinate
just below the baseline that round parts of characters at the
baseline reach. A value of -15 is typical. Note that curved char-
acters typically extend slightly below the baseline; as a result
this value is typically negative.

The cap-height is the y coordinate of the top of flat capital let-
ters. A value of 700 is typical.

The cap-height overshoot position is the maximum y coordinate
just above the cap-height that the round parts of characters
reach. A value 10 to 20 greater than cap-height is typical.

The x-height is the y coordinate of the top of flat, non-ascend-
ing lower case letters. A value near 450 is typical.

The x-height overshoot position is the maximum y coordinate
just above the x-height that the round parts of lower case letters
reach. A value 10 to 20 greater than x-height is typical.

Figure 3c. Vertical measurements: baseline and baseline overshoot
position, x-height and x-height overshoot position, cap-height and cap-
height overshoot position

cap-height overshoot position
cap-height

x-height overshoot position
x-height

baseline
baseline overshoot position

VOXc

Alignment zones for the tops of character features are called top-
zones, and alignment zones for the bottoms of character features
are called bottom-zones. For example, the cap-height and x-height
zones are top-zones, while the baseline zone is a bottom-zone.
Top-zones and bottom-zones are discussed further in Chapter 5,
“Private Dictionary,” and Chapter 6, “CharStrings Dictionary.”

24 Adobe Type 1 Font Format

3.3

Nearly all roman Type 1 font programs use baseline, cap-height
and x-height alignment zones. Some of these fonts include other
alignment zones as well. These zones may describe figure-height,
ascender-height, descender-depth, superior baseline, ordinal
baseline, and so on. The particular set of zones is chosen
according to the design of the font; there is no requirement that
any particular set of zones be used. For more information, see the
definition of BlueValues in section 5.3, Chapter 5, “Private
Dictionary.”

Character Coordinate Space

In the PostScript language, characters have their own coordinate
system distinct from the coordinate system used by a specific
device. The coordinate system in which characters are defined is
called character space, the coordinate system used by a device is
called device space, and the coordinate system used in PostScript
language programs for placing objects on a page is called user
space.

Type 1 font programs generally use a 1000 to 1 scaling matrix for
the definition of the relationship of character space units to user
space units. The FontMatrix value in these fonts is typically
[0.001 0 0 0.001 O Q]. Thus, 1000 character space units will scale
down to 1 user space unit (before application of the makefont or
scalefont operators in a PostScript language program). This
allows character space coordinates to be expressed in integer
values without significant loss of precision for most font designs.
If additional precision is necessary, expressions such as 145 10 div
may be used to provide a number (in this case, 14.5) that cannot
be expressed directly in the charstring format.

Figure 3d shows how two characters are situated in the character
space coordinate system. Notice that the value of 1000 is not a
limit of any kind—it simply provides a coordinate system and a
ratio for scaling characters to the one unit master size.

Chapter 3: Character Outline Considerations 25

26

3.4

Figure 3d. Character space coordinate system

961

712

500

-250

The only exceptions to the standard 1000 to 1 scaling matrix
involve obliquing, narrowing, and expanding transformations
applied to a font that had been originally defined by a 1000 to 1
scaling matrix. Even in these cases, at least one dimension of the
FontMatrix will be a simple 1000 to 1 scale. Coordinates and
widths should be defined for the normal 1000 to 1 scale. If a dif-
ferent font matrix is applied, for example, to make an oblique
font from a normal font, the new font matrix will transform all
these coordinates and widths together.

Type 1 BuildChar expects that the absolute coordinate values
that define a character outline do not deviate too far outside of
the one user space unit to which the character space coordinates
will be transformed. Absolute coordinate values in both x and y
directions must be between -2000 and +2000. (When coordinate
values are computed using the div command, its operands may be
out of this range; the final result of such a computation however,
must be within this range.)

Character Paths

A character is made up of PostScript language code that draws the
character in character space. The first step in preparing the con-
tents of a charstring is to develop a PostScript language program
that defines the character outline in character space. An outline
is defined by building a path with the moveto, lineto, curveto,
closepath, rlineto, etc. operators. Only characters defined by out-
lines may be included in Type 1 font programs; for example, the

Adobe Type 1 Font Format

Note

3.5

image and imagemask operators are not allowed. Once the path
has been expressed using only integer constants (and operations
on them) for coordinates, it is a simple matter to translate from
the pure PostScript language operators to the special set of com-
mands recognized by Type 1 BuildChar. The charstring encoding
allows only integers as numeric constants; however, non-integer
values can be created as a result of arithmetic operations and
passed to the commands. See Chapter 6, “CharStrings Dictio-
nary,” for the complete list of allowable charstring commands.

Many versions of the PostScript interpreter have an internal limit
of 1500 flattened path elements per character; exceeding this
bound results in a limitcheck error. Each character outline in a
given font design must not exceed this limit when rendered.
Each Type 1 font program should be tested sufficiently to verify
that the font program behaves well with respect to this limit. The
upper limit can be checked by testing at least the more compli-
cated characters in a given font (the characters with the greatest
number of path commands) at a reasonably large size, for exam-
ple, 200 points. The characters should be tested on a high-
resolution device set to its highest resolution, where flattening
results in the most segments. The font should, of course, also be
tested with the Adobe Type Manager software product. Kanji font
characters need only be tested on Kanji printers since these print-
ers have significantly increased limits for the number of path
elements allowed.

Should a character result in a limitcheck error, the only choice is
to try to reduce the number of path commands or to convert the
font into the Type 3 font format.

A Type 1 font character is filled as one path; complicated characters
can produce a limitcheck error. You must experiment to find the flat-
tened path limit for any particular combination of device and version
of the PostScript interpreter. This is why Adobe Systems encourages
extensive font program testing before release. Generally, your font pro-
gram either will run acceptably or it will generate a limitcheck error.

Direction of Paths

A subpath that is to be filled must be defined in a counterclock-
wise orientation in character space. A subpath that is to be left
unfilled must be defined in a clockwise orientation. If you imag-
ine walking along a subpath in the direction it is defined, then a
filled area should be on your left. This convention allows Post-

Chapter 3: Character Outline Considerations 27

Script language programs to create combinations of paths
involving characters with reliable winding number orientations.
On some implementations of Type 1 BuildChar, this orientation
is expected; some rendering algorithms depend on it.

Figure 3e. Construct subpaths in the correct direction

3.6 Overlapping Paths

A single closed outline should not intersect itself; this can cause
winding number problems. If two filled subpaths in a character
overlap, there may be no problem when the character is filled.
However, a Type 1 font program can also be stroked along its out-
line when the user changes the PaintType entry in the font
dictionary to 2. In this case, overlapping subpaths will be visible
in the output; this yields undesirable visual results in outlined
characters. Always construct the character paths with outlined
output in mind.

Figure 3f. Avoid overlapping subpaths

Filled character Stroked character: incorrect Stroked character: correct

28 Adobe Type 1 Font Format

4.1

CHAPTER 4

Technical Design
Considerations

At first it may seem that character outlines need not differ much
from other graphic outlines. However, the requirements of letter-
forms impose more stringent requirements on a character outline
if it is to look good. Making a PostScript language implementa-
tion of a typeface design involves two essential considerations:

e The character paths must accurately express the true analog
shapes of the original design.

« Certain conventions must be observed to help the interpreter
accurately scale for all sizes.

Failure to observe either of these conventions can result in
uneven stems, unwanted pixels, poor curve shapes, and poor
transitions from straight to curved sections. While there are no
hard and fast rules for font outline design in a Type 1 font pro-
gram, paying attention to the guidelines discussed in this chapter
will help ensure pleasing results.

Points at Extremes

An endpoint (first or last point of a lineto or curveto) should be
placed at most horizontal or vertical extremes. This implies that
most curves should not include more than 90 degrees of arc. The
placement of extreme points aids the rendering algorithms in
properly reproducing the major features of characters. Of course,
points may be placed anywhere else on the character outline, as
long as the important extremes are defined as well. It is not nec-
essary to place an endpoint at extremes of very small curves such
as the tips of curved serifs.

29

30

Figure 4a. Place endpoints at most extremes (arrow indicates a possible
exception)

4.2 Tangent Continuity

The smooth, curved path elements that form the lines of a type-
face are particularly hard to represent well when the output
technology is raster-based. Tangent continuity describes the
method that well-designed fonts use to produce outlines with
smooth transitions.

Whenever one path element should make a smooth transition to
the next element (for example, straight line to curve, curve to
straight line, or curve to curve) the endpoint joining the two ele-
ments and the Bézier control points (the off-curve points)
associated with that endpoint (for curves) or the other endpoint
(for lines) should all be collinear. This is especially important at
horizontal and vertical extremes, where slight deviations tend to
be magnified by interaction with the pixel grid.

Adobe Type 1 Font Format

4.3

Figure 4b. Make smooth transitions between path elements

52,75 65,75 78,75

60,100 80,100 100,100 60,102 g5109 100,101

¢ 120,85 121,85

52,74 65,75 78,75

; 120,60 ; 120,60

-

120,0 - 120,0

Correct Incorrect

Conciseness

Character outline definitions should be as concise as possible,

wi

thout breaking the other rules. This achieves minimum

memory usage and maximum speed in the rendering system, and
simplifies the task of adding hints.

Use the fewest Bézier curve segments that accurately represent
a shape.

Do not use consecutive collinear straight line segments.

Do not draw straight lines by using collinear curveto defini-
tions (for example, “0 0 moveto 0 10 0 20 0 30 curveto™).

Whenever possible, use the closepath command to draw one
of the straight line segments, rather than closing a character
with a closepath that results in a zero-length line segment.

In general, find the smallest sequence of commands that accu-
rately describe the character shape.

Chapter 4: Technical Design Considerations 31

Figure 4c. Paths should be concise

Correct Incorrect

4.4 Consistency

The key to getting the best possible results is consistency. The
original designs of most typefaces include many repeating
weights, alignments, and shapes. Often, however, the process of
creating digital outlines introduces small errors that can obscure
the repeating nature of these features. Seemingly insignificant
differences can become exaggerated on digital devices. Wherever
possible, these errors should be eliminated.

« All stems whose widths are intended to be the same should
have exactly the same width.

« All characters that are intended to align should align at exactly
the same y coordinate.

= All shapes that are intended to be the same should be exactly
the same.

« All spacing characteristics (sidebearings) that are intended to
be the same should be exactly the same.

32 Adobe Type 1 Font Format

It is possible to carry consistency too far. It is important to keep
in mind that Type 1 font programs are used to set type at any size
on a wide range of digital devices. Type 1 font programs can be
used on all PostScript language devices. The resolution and mark-
ing characteristics of these devices vary widely. They include
display monitors, laser printers, typesetters, thermal transfer
color printers, film recorders and many others. The resolutions
range from about 75 dpi to 3000 dpi or more.

Consistency should be applied only as long as it accurately
reflects the original design. Some trade-off between the results
obtainable at low and high resolutions is inevitable. It is possible
to achieve high quality on a particular device by adjusting the
outlines to optimize for its resolution and imaging characteris-
tics, for example, for 300-dpi write-black laser printers. However,
such font software may give unsatisfactory results on devices
with very different characteristics and much higher resolution.
There are no requirements in the Type 1 font format that should
cause font design compromises in the interests of consistency.

Chapter 4: Technical Design Considerations 33

34 Adobe Type 1 Font Format

5.1

CHAPTER B

Private Dictionary

The Private dictionary contains hints that apply across all the
characters in the font, subroutines, and several other items such
as a password. Refer to Appendix 1 for a complete listing of the
required and optional entries in the Private dictionary.

The hints used in character outlines help to preserve properties of
shapes when rendered at limited resolutions. When the number
of pixels in a character increases, as with very large characters or
on high-resolution output devices, the hints become less impor-
tant. When a stem is rendered at 100 pixels wide, a 1-pixel
difference matters much less than when the stem is rendered at
only 2 pixels wide. Thus, the implementation of hints mostly
concerns rasterization properties at low resolutions and small
sizes. With the hints in place, Type 1 BuildChar can produce
results that are as close as possible to the original design even
though the shape is reproduced by a relatively small number of
pixels.

Declarative Hints

As with any software, there are many possible ways to design a
system to compensate for low resolutions and small character
sizes on a raster output device. Some methods are more efficient
than others for modifying character outlines at various sizes and
rotations, for requiring minimal storage, and for allowing inde-
pendence from any given level of rendering technology.

Adobe Systems has created a predominantly declarative hint
system for Type 1 font programs. Declarative hints state con-
straints on the size and positioning of character features, for
example, the width of a stem or the location of an extremity.
These declarative hints are stated in two distinct locations in a
font program. The Private dictionary contains a number of font

35

36

5.2

5.3

level hints that apply across all characters represented in the font
program; the individual charstrings in the CharStrings dictionary
contain character level hints that describe important typographic
features about a particular character.

A declarative hint system depends on an intelligent rasterizing
algorithm to render character outlines correctly. Adobe has built
such an algorithm into the PostScript interpreter and its other
rendering software, such as the Adobe Type Manager program.
Consequently, the appearance of font characters created with
declarative hints will continue to improve as hint handling algo-
rithms improve, without modifying the Type 1 font programs.

Font Level Hints

Hints that apply across an entire font are declared by setting cer-
tain values in the Private dictionary. Many of these hints declare
constraints on the vertical positions of character features across
the entire font. This helps to maintain consistency across the
font, especially when rendered at low resolution. For historical
reasons, these hints are indicated by names that contain the word
“Blue.”

For example, Type 1 BuildChar uses the information in the
BlueValues and OtherBlues arrays to adjust the rendering of char-
acter features that fall within alignment zones. This adjustment
is called alignment control, which at small sizes includes overshoot
suppression. At small sizes, when only a few pixels must represent
a character, a one-pixel overshoot appears too prominent.

BlueValues

The value associated with BlueValues is an array containing an
even number of integers taken in pairs, and which follow a small
number of rules:

e The first integer in each pair is less than or equal to the second
integer in that pair.

e The first pair is the baseline overshoot position and the base-
line. This is a bottom-zone.

Adobe Type 1 Font Format

« All subsequent pairs describe top-zones, that is, alignment
zones for the tops of character features, for example, x-height
and x-height overshoot position, ascender-height and
ascender-height overshoot position, cap-height and cap-
height overshoot position, figure-height and figure-height
overshoot position.

* Up to seven pairs may be given in the BlueValues array; the
first pair must be the baseline pair.

< Different pairs must be at least 3 units apart from each other
and from pairs in OtherBlues, as described in the following
section. (This minimum distance can be modified by the
optional BlueFuzz entry in the Private dictionary; see the def-
inition of BlueFuzz, that follows.)

 The maximum difference between values in one pair is con-
strained as described under the description of BlueScale, that
follows.

For example, an array for the baseline, cap-height and x-height
alignment zones in a typeface might be defined as follows:

/BlueValues [-15 0 700 715 547 559] def

Despite the names given to the various alignment zones
described by the BlueValues, Type 1 BuildChar has no built-in
notions of which parameters apply to which characters. Each
zone helps to control the alignment of any and all characters
with character level hints that fall within the zone.

The BlueValues array is required in the Private dictionary. If no
alignment zones are necessary, use an empty array for the value
of BlueValues:

/BlueValues [] def

Chapter 5: Private Dictionary 37
