
A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

1

PDF Days Europe 2018

Structure Recognition

Joris Schellekens
Software Engineer - iText

1

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

The iText R&D team
Structure Recognition 2

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

About PDF

• Various standards: PDF/A-1, PDF/A-2, PDF/A-3,
PDF/UA, PDF/E, PAdES, etc.

• Level of descriptiveness (e.g. metadata) varies.

• Basic level:
instructions for how a viewer (e.g. Adobe
Reader) should render a document.

[a, -28.7356, p, 27.2652, p, 27.2652, e, -27.2652, a, -28.7356, r, 64.6889, a, -28.7356, n, 27.2652, c, -38.7594,
e, 444] TJ
/R10 10.44 Tf
68.16 0.24 Td
[", 17.1965, P, -18.7118, i, -9.35592, l, -9.35592, o, -17.2414, t, -9.35636, ", 17.1965, , 250] TJ

Presenter
Presentation Notes
Today I’d like to talk about structure recognition.

But before we dive deeper into it, let me give you some background information. PDF comes in various standards.

Depending on which standard your document adheres to, the level of descriptiveness varies.

At the basic level, a PDF contains only the instructions needed for a viewer to be able to render your document.

On this slide you can see an example snippet of PDF syntax. It should be clear that extracting any useful information from such content is not going to be easy.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Expectations of end-users

• People are used to programs like Microsoft®
WordTM .

• Reflow (e.g. flowing content around an image).

• Structure is part of the document.

• Export to various formats.

• Extracting data.

• Change appearance of a logical unit (e.g. word,
line, or paragraph).

Presenter
Presentation Notes
However, to an end-user, this does not make sense. Users typically don’t discriminate between various document formats. We see this often enough in our support board that people expect PDF to act like Microsoft Word, or render like a browser would.
�Concretely, users may expect reflow (the ability to restructure content when content is removed or added), exporting to various formats, extracting data (especially tabular data), and changing the appearance of a logical unit (making an individual word, line, or paragraph bold or changing its font)

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Constraints

• iText Group nv is an open source company:
• Close to the community.
• Code should be something you want other

people to see - accessible
(rather than a dirty hack) .

• Code should be something the user can
change - contribution.

• Submitting pull requests.
• Tweak and fine-tune to match experience and

expertise.

Presenter
Presentation Notes
This being said, it is important to keep in mind what iText represents to the community, because it has a direct impact on what makes a solution viable.�
We are an open source company, and our code will end up being accessible to our user. This means we can’t simply implement a black box that magically works.
�We want to engage our users, encourage them to submit pull requests, and allow them to tweak and fine-tune the code to match their experience and expertise.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Technical

7

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Proposed solution

Recognize
words

Merge
words into
lines

Merge lines
into
paragraphs

Detect special
features
(e.g. image
caption,
header, footer,
etc.)

Detect lists
(numeric,
bullet)

Detect
tables

Presenter
Presentation Notes
The process we are currently testing is much like building the structure tree root from the leaves up.�We start by recognizing chunks (based on the information we have when parsing). ��Then we merge those into lines. This is not always trivial, for instance with scientific articles that may appear in 2- or 3-column layout. Or text that is interspersed with quotes, or even text that flows around other objects.��Once lines are detected, we can move to paragraphs. And again, all kinds of challenges arise. Ideally, we also want to determine certain linguistic properties of the text (most notable the language) and some stylistic properties (is the text aligned right, center, or justified?). Although this information is not vital for tagging a document, it can help us with later processing.��From paragraphs, we move up to feature paragraphs. The text underneath an image, a footer, a header, a small disclaimer at the bottom of the page.��And finally, we can use our knowledge of paragraphs and layout to determine larger structural elements such as lists and tables.�

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Efficient merging

• Data structure – evaluating equivalence.

• Disjoint set algorithm:

• Space, find, merge all in O(α(n)).

• Maps nicely to PDF ideas.

Presenter
Presentation Notes
With all this merging being done, it is important to consider which data structures to use. Any data structure that is highly efficient at evaluating equivalence would be suitable for the job.
�Fortunately, the disjoint set offers just what we need.�It performs all its operations in time that is proportional to the inverse Ackermann function of the number of nodes in the data structure.�So for all practical purposes, this can be considered a constant below 5.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

When to merge

• Disjoint set tells us how the merging happens, not
when.

• When depends on what is being merged - 2
approaches:

1. (Human) logic
• Chunks are merged into words based on

distance.
• Words are merged into lines based on distance

and global page layout.
• Lines into paragraphs based on distance and

visual cues.

Presenter
Presentation Notes
A disjoint set will enable us to take abstraction from the actual merging implementation and allow us to focus instead on what we want to merge.
�There are two approaches here, I’ll briefly discuss both of them.

First, we can apply (human) logic. Meaning we look at individual chunks, and we apply some heuristics. �Merge two chunks if the distance between them is smaller than the width of a space in the same font. �Of course, we may run into some issues. The font might be subset, and not contain the space character. That’s where the heuristics part comes in. The width of space might be approximated by some other character, or perhaps simply as a fraction of the height.��We can analyze the document on a global level, and look at large gaps, and assume these indicate a tabular layout. We can tell the algorithm not to merge content if they would bridge large gaps (because the global layout is unlikely to change). But again, this introduces a whole range of parameters that we need to fine-tune.�

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

• PDF
• Preferably tagged (to

enable supervised
learning)

Convert to
graphics

• Mark certain sections
• Table, list, paragraph,

header, footer, etc.

Deep neural
network • Deep neural network

coefficients
• Error rate
• Not retractable

Deliverable

When to merge (alt)

• Alternative (bends the constraints) – use Artificial
Intelligence.

• Tackle the problem like an image
recognition problem

Presenter
Presentation Notes
The previous slide immediately gives you an idea of the kind of problems we have run into. It requires a lot of specialist algorithms to decide when any content makes up a line, paragraph, table or list. And all of these algorithms come with their own parameters that can (and often need to be) tweaked for best performance. Although we like the idea of having something that is configurable, maybe this is taking it to the extreme. An alternative solution might be to use artificial intelligence.��In particular, all these rules about when to merge words into lines, or when to merge lines into paragraphs, that feels like something a neural network could learn. So that’s what we tried.�We extracted the rendering information from all the chunks:
X and Y coordinate
Width and height of the bounding box
Font size
Font style information
And then we feed the network a pair of these chunks (for a total of about 16 features). It’s up to the network to output 1 if the pair ought to be merged, and 0 if it should be kept separate.�And of course, we can repeat that process for paragraphs, and a similar process for tables and lists.��The real strength of this solution is that it is still configurable. In fact, the network can even be trained to work especially well for the documents the end-user typically processes.�Second, this approach comes with a ‘soft fail’ mode. At its core, the algorithm will produce a probability of two chunks being merged. It is up to the end-user to set a threshold. And depending on that threshold the results may vary.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

In Depth

12

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Building a training set

• Use of NN requires training data
• Large volume of (perfectly) tagged PDF documents

• Not readily available

• Build our own?
• pdfHTML (convert random crawled HTML to PDF)
• Gutenberg
• Crawl the internet for PDFs
• Industry contacts

Presenter
Presentation Notes
The use of a neural network requires a large amount of training data. Which means at some point in the development of this proof of concept, we needed a large amount of tagged, preferably perfectly tagged PDF documents.�This turned out to be very hard to find.
We have tried everything we could think of to get our hands of them. We considered using pdfHTML, a tool we built that converts HTML to PDF. By using this tool, we can for instance turn ebooks from project Gutenberg into PDF documents that are tagged. The problem here is that pdfHTML imposes a certain structure to the document. So the neural network will not be robust enough.��We also tried crawling the internet for random PDF documents, and simply using iText to check whether they are tagged. But, aside from the legal issues, it turns out randomly selected document are often untagged. And even the tagged ones are usually not well tagged.��We also tried simply reaching out to the community and our industry contacts. But nobody had any knowledge of a large repository of tagged PDF documents that they were willing to share (or could legally share).��Ultimately, with a lot of effort, and small amounts at a time, we were able to gather about a thousand tagged PDF documents that were tagged somewhat properly.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Convert training set

14

Presenter
Presentation Notes
The next step in the pipeline is the initial processing. We can’t feed raw PDF syntax into a neural network. It needs to be pre-processed of course.�The neural network has an input layer of fixed size. So we need to select a number of relevant features.�In this case, we used the tagging to extract bounding boxes from the PDF that have the same tag. In the image on the slide, you can see everything marked as a \P with a yellow box around it.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Convert training set (2)

• Feature selection
• X
• Y
• Width
• Height
• Fontsize
• Bold?
• Italic?
• Underline?
• ΔX
• ΔY

15

Presenter
Presentation Notes
For each box representing a line (\span) we extracted (or calculated) the following attributes:
X and Y coordinate
Width and height of the bounding box
Font size
Whether the text is displayed in bold, italic, or underlined
The smallest distance between this line and the next line in both X and Y direction

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Feed the beast

41 56 10 26 16 52 56 8 26 16 1 0 1
52 56 8 26 16 41 56 10 26 16 1 0 1
52 56 8 26 16 60 56 9 26 16 0 0 1
60 56 9 26 16 52 56 8 26 16 0 0 1
60 56 9 26 16 70 56 5 26 16 1 0 1
70 56 5 26 16 60 56 9 26 16 1 0 1
70 56 5 26 16 76 56 8 26 16 1 0 1
76 56 8 26 16 70 56 5 26 16 1 0 1
76 56 8 26 16 84 56 14 26 16 0 0 1
84 56 14 26 16 76 56 8 26 16 0 0 1
84 56 14 26 16 99 56 9 26 16 1 0 1
84 56 14 26 16 276 190 17 865 16 178 134 0

16

Presenter
Presentation Notes
With this last step of the data conversion done, we can finally feed the neural network.�We input a vector containing all the attributes we just listed, and we attempt to train the network to output 1 or 0, depending on whether the lines are part of the same paragraph, or not.
Of course we tried various network topologies, ranging from shallow to deep, and with various activation functions.�We used Weka for rapid prototyping, and deeplearning4j to achieve higher performance.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

17

private void tagUsingAI(InputStream wekaModel, int confidence, List<StructureNodeImpl> nodes, boolean converge){
IMerger nn = new WekaModelMerger()

.load(wekaModel)

.setThreshold(confidence / 100.0);

// converge
if(converge) {

IMerger cv = new Convergence(nn);
cv.apply(nodes);

}
else{

nn.apply(nodes);
}

}

public interface IMerger {

void apply(List<StructureNodeImpl> l);

}

Presenter
Presentation Notes
Once done, we can store the network (which boils down to a few matrices of numbers).�And then load that same model whenever we need to apply this merge.�This is what that method looks like.�We feed the method a model (in this example a weka model), and some level of confidence.�The confidence level ensures that the code only merges those structure nodes that achieve a certain compatibility.�The IMerger you see in the code is a composite pattern, that iterates the merging step until convergence has been achieved.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Benefits

1
8

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Tagging
an

untagged
document

[…]
<MCID text="e" x="409.0" y="686.0" width="11.0" height="25.0" />
<MCID text="r" x="421.0" y="686.0" width="8.0" height="25.0" />
<MCID text="l" x="429.0" y="686.0" width="5.0" height="25.0" />
<MCID text="a" x="435.0" y="686.0" width="11.0" height="25.0" />
<MCID text="n" x="446.0" y="686.0" width="12.0" height="25.0" />
<MCID text="d" x="459.0" y="686.0" width="12.0" height="25.0" />
<MCID text=" " x="472.0" y="686.0" width="5.0" height="25.0" />

</P>
<P lang="nl" x="72.0" y="295.0" width="468.0" height="109.0">

<MCID text="m" x="72.0" y="295.0" width="9.0" height="14.0" />
<MCID text="e" x="81.0" y="295.0" width="5.0" height="14.0" />
<MCID text="t" x="87.0" y="295.0" width="3.0" height="14.0" />
<MCID text=" " x="91.0" y="295.0" width="2.0" height="14.0" />

[…]

Presenter
Presentation Notes
For starters, we can reproduce the tagging of the document.

As an intermediate step, the proof-of-concept I built outputs this XML structure that contains a possible tagging, the bounding boxes and the text of each element. For paragraphs, we also keep track of language to later determine reading order.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Reflow

Presenter
Presentation Notes
With this pseudo-tagging in place, we can effectively implement reflow.�On this slide you can see the words “In this” which will be removed.
�To give you an idea of the impact of the algorithm, I have marked two other chunks “compare” and “supervised” in green and blue respectively.�We’ll see that the algorithm will move them around to make up for the available space after removal.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Reflow

Presenter
Presentation Notes
Here you can see the impact of the algorithm. Although it is certainly not yet perfect, by making use of structure information we are able to re-layout the paragraph while preserving the original justified look.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Responsiveness

• Extreme case:

• Layout content of A4 PDF on A3 canvas.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Accessibility

Read aloud

Smart
navigationConversion

Presenter
Presentation Notes
Being able to correctly tag a document is invaluable when we’re talking about accessibility. �Whether it’s reading a document aloud (and we have a prototype with the Amazon Echo Dot), or even just converting a document to a different format, knowing the structure of the document is crucial.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Data extraction

Presenter
Presentation Notes
This is a dummy invoice that we used for testing our proof of concept.
�As you can see the algorithm correctly interprets the layout of certain pieces of text and assumes they form a table. The remarkable thing here is that the content does not contain that many lines that would serve as visual clues.
�With this approach, data extraction from an untagged PDF becomes trivially easy.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

Detect
tables and

lists

Detect
spatial

features

Merge lines
into

paragraphs

Merge
words into

lines
Recognize

words

• Data structures
• Disjoint set: (Human) logic | Global level | Artificial intelligence

• Benefits:
• still configurable.
• able to train network to work well for documents you typically process.
• ‘soft fail’ mode.

A PDF Association Presentation · © 2018 by iText · www.itextpdf.com

www.pdfa.org

2018-05-14

Joris Schellekens
Software Engineer
iText

26

PDF Days Europe 2018

Thank you! Any questions?

Get in touch: joris.schellekens@itextpdf.com
Web site: www.itextpdf.com
Twitter: @itext

26

	PDF Days Europe 2018
	The iText R&D team
	About PDF
	Expectations of end-users
	Constraints
	Technical
	Proposed solution
	Efficient merging
	When to merge
	When to merge (alt)
	In Depth
	Building a training set
	Convert training set
	Convert training set (2)
	Feed the beast
	Slide Number 17
	Benefits
	Tagging an untagged document
	Reflow
	Reflow
	Responsiveness
	Accessibility
	Data extraction
	Slide Number 25
	PDF Days Europe 2018

