

Deriving HTML from PDF
A usage specification for tagged ISO 32000-2 files

Version 1.0 (June 2019)

Copyright © 2019 PDF Association

This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO
Box 1866, Mountain View, CA 94042, USA.

PDF Association
Neue Kantstrasse 14

14057 Berlin, Germany

Tel: +49 (0)30 39 40 50-0
Fax: +49 (0)30 39 40 50-99

E-mail: copyright@pdfa.org
Web: www.pdfa.org

Published in Germany and the United States of America

mailto:copyright@pdfa.org

Foreword
The PDF Association is the meeting place of the PDF industry. The work of preparing
industry standards and best practices is normally carried out through Technical Working
Groups (TWGs). The results of such work may, if desired by the members of the respective
TWG, the Board of Directors, and the members as a whole, may be submitted to ISO for
publication as an International Standard.

Each PDF Association member interested in a subject for which a TWG has been
established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with the PDF Association,
also take part in the work. The PDF Association collaborates closely with the 3D PDF
Consortium and ISO on all matters of standardization.

The procedures used to develop this document and those intended for its maintenance
are described in the PDF Association's publication process.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The PDF Association shall not be held responsible for
identifying any or all such patent rights. Details of any patent rights identified during the
development of the document will be in the Introduction.

Any trade name used in this document is information given for the convenience of users
and does not constitute an endorsement.

https://www.pdfa.org/publication-process/

PDF Association

© 2019 PDF Association iii

Table of Contents
Foreword ... ii

Introduction .. 1

References ... 2

1 Scope ... 3

2 Terms and definitions ... 4

3 Notation ... 4

4 Algorithm for deriving HTML from Tagged PDF ... 5

4.1 Technical context ... 5

4.2 Document handling .. 5

4.2.1 Head .. 5

4.2.2 The structure tree root ... 6

4.2.3 The ClassMap .. 6

4.2.4 Body .. 8

4.3 PDF structure elements .. 9

4.3.1 General ... 9

4.3.2 Common processing .. 9

4.3.3 Mapping PDF structure element types to HTML elements 11

4.3.4 Ensuring valid HTML .. 15

4.3.5 Special cases .. 16

4.3.6 Structure element properties .. 25

4.3.7 Attributes .. 26

4.4 Processing of a content element ... 33

4.4.1 Paths ... 33

4.4.2 Text ... 34

4.4.3 Image XObjects and inline images .. 34

4.4.4 Form XObjects .. 35

4.4.5 Shadings ... 35

4.4.6 Artifacts ... 35

4.4.7 Handling marked content sequences ... 35

4.4.8 Processing of an object reference (OBJR) ... 36

4.5 ECMAScript ... 40

PDF Association

© 2019 PDF Association iv

4.6 Associated file processing .. 41

4.6.1 General ... 41

4.6.2 URL References .. 41

4.6.3 Media types .. 41

4.6.4 Handling media types .. 42

Annex A: Security implications ... 45

Annex B: ECMAscript derivation guidance ... 46

Bibliography .. 48

© 2019 PDF Association 1

Introduction
Over the past 25 years PDF format has matured from a fixed-layout, page-description
format into a sophisticated foundation for deploying content. In 2018, PDF’s dominance in
the electronic document marketplace remains based on its fixed-layout heritage rather
than its capabilities as a rich content container.

In the modern world of small devices, IoT and connected systems, where interchange and
reuse of data is critical, it is reasonable to question the continued relevance of PDF’s core
value proposition. In particular, search engines, machine learning and artificial
intelligence systems focus on accessing information contained in documents over visual
representation. In other cases, document producers wish to deliver data in a form that is
suitable for automated processing while using a PDF file as a record for trust purposes.
End users want electronic documents that adapt smoothly to viewing on diverse small
devices.

By describing the algorithm that produces conforming HTML from a tagged PDF, this
document shows how well-tagged PDF documents, containing both traditional fixed-
layout content and the semantic structures leveraged by modern devices and software,
can be reliably and consistently reused as HTML to support better user experiences and
renew PDF’s value proposition.

HTML was chosen as a derivation target because HTML is consumed on all platforms and
supported by all major vendors. With small modifications, developers can use this
document to export content from well-tagged PDF to any format.

Author

Roman Toda, Normex

Contributors

Boris Doubrov, Dual Lab

Olaf Drümmer, callas software

Matthew Hardy, Adobe

Duff Johnson, PDF Association

Leonard Rosenthol, Adobe

PDF Association

© 2019 PDF Association 2

References
ISO 14289-1:2014, Document management — Electronic Document File Format Enhancement
for Accessibility — Part 1: Use of ISO 32000-1 (PDF/UA-1)

ISO/IEC 16262:2011, Information technology — Programming languages, their environments
and system software interfaces — ECMAScript language specification. (Also known as
JavaScript. Also available as ECMA-262 Edition 5.1 from ECMA)

ISO 21757-1, Document management – ECMAScript for PDF – Part 1: Use of ISO 32000-2 (PDF
2.0)

NOTE 1 As of this writing, this document is at ISO's Committee Draft stage, and is available
only to accredited members of ISO TC 171 SC 2 WG 8, or to members of the PDF
Association.

ISO 32000-2: 20xx, Document management — Portable Document Format — Part 2: PDF 2.0

NOTE 2 This document uses the forthcoming dated revision of ISO 32000-2. This
document remains under development and is only available to accredited members of ISO
TC 171 SC 2 WG 8 or to members of the PDF Association. A Draft International Standard
(DIS) of this document should be available for purchase from ISO in the early summer of
2019.

HTML 5, http://www.w3.org/TR/html5/

"http://www.w3.org/1999/xhtml", in "HTML5 – A vocabulary and associated APIs for HTML
and XHTML; W3C Recommendation; 28 October 2014; W3C"

Cascading Style Sheets https://www.w3.org/Style/CSS/

http://www.w3.org/TR/html5/
http://www.w3.org/1999/xhtml

PDF Association

© 2019 PDF Association 3

1 Scope
This document describes an algorithm that produces conforming HTML5 from a well-
tagged PDF.

It is important to see "well-tagged" in the context of known best practices for tagging that
require semantic appropriateness, recommend the best use of PDF structure elements in
diverse situations, and other practices.

This document identifies "well-tagged PDF" as those PDF files that conform to ISO 32000-
2, 14.8 "Tagged PDF", or ISO 14289-1 (PDF/UA-1).

The best results are achieved when tagged pdf files are both authored (by users) and
created (by software) with reuse in mind. In particular, the semantic structures defined in
Tagged PDF are fundamental to realizing the author’s intent in the derivation context.
Their presence as an accurate reflection of the author’s intent is the guarantor of an
expected user experience.

This document is intended for the developer of software that:

 creates PDF files suitable for reuse
 interprets PDF contents for alternative display on mobile devices and/or HTML

environments
 embeds PDF viewing into HTML pages
 derives PDF content into HTML for automated processing

This document does not:

 Provide adaptations for deriving PDF into HTML sub-structures (e.g., within a <div>)
 Provide guidance for editing or modifying PDF files or HTML derived from PDF files
 Provide guidance for addressing the security implementations of derivation
 Substitute for best-practice documents focusing on accessibility

PDF Association

© 2019 PDF Association 4

2 Terms and definitions
derivation

deterministic process of conversion of Tagged PDF files into a syntactically valid HTML file

derived HTML

HTML produced by processors operating in conformity with this document

derived CSS

default CSS produced by processors operating in conformity with this document

media type

a two-part identifier for file formats and format contents, also known as MIME type or
content type

processor

any software, hardware or other active agent that derives HTML from a tagged PDF file

tagged PDF

PDF files that conform to ISO 32000-2, 14.8 "Tagged PDF"

3 Notation
Key names are given in boldface, while values are given in italics.

In example pseudo-code, standard PDF structure element entries are given with angled-
brackets (e.g., <Div>). The elements are not closed; instead, items contained within PDF
structure elements are enclosed by "{ }". Attributes are indicated using HTML conventions,
e.g. ‘<P lang="en-us">’, remarks or special characters are shown by [].

EXAMPLE

<Figure alt="PDF icon">

<Caption> {

 <P> [remark or notice]

 <P> {relevant content}

}

PDF Association

© 2019 PDF Association 5

4 Algorithm for deriving HTML from Tagged PDF
This algorithm establishes requirements for processors desiring consistent results from
the derivation of tagged PDF to HTML.

4.1 Technical context
Use of this algorithm assumes substantial knowledge of ISO 32000-2 in general, and
subclauses 14.6 - 14.9 in particular, as well as HTML5. Format requirements in those
specifications are not re-iterated here; knowledge of them is assumed.

4.2 Document handling
The processor shall initialize two output streams - one for derived HTML and one for the
derived CSS. The HTML stream shall reference the CSS using conventional techniques.

NOTE 1 The processor may decide to store derived CSS in a separate file and use a link
element to define the reference to it in the derived HTML.

The first line of the HTML document shall be "<!DOCTYPE html>".

NOTE 2 While not required, a DOM-like approach for both HTML and CSS document
processing is recommended to allow for inline-modifications. However, the use of a
stream-based approach is also acceptable.

4.2.1 Head
The first element created in the HTML output shall be a head element with four child
elements, title, meta, viewport and link.

The value of the title element shall be derived from the value of the dc:title metadata
value (if present) in the PDF’s document-level XMP. If the PDF does not have a dc:title
specified, the value of the title element in the HTML shall be derived from the PDF’s
filename.

All text shall be encoded using UTF-8. A meta element shall be added with attributes of:

 http-equiv, whose value shall be Content-Type
 content, whose value shall be text/html; charset=utf-8

A second meta element shall be added with attributes of:

 name, whose value shall be viewport
 content, whose value shall be width=device-width, initial-scale=1

NOTE Using meta facilitates more responsive behaviour on diverse devices.

EXAMPLE

<!DOCTYPE html>

<html>

<head>

PDF Association

© 2019 PDF Association 6

<title>A Document’s Title</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-
8"/>

<meta name="viewport" content="width=device-width, initial-
scale=1"/>

<link rel="stylesheet" type="text/css" href="pdf-derivation-
style.css"/>

</head>

...

</html>

4.2.2 The structure tree root
The structure tree root element may have one or more associated files specified via an AF
entry. These AF entries shall be processed to build the head element of the HTML output
(see 4.6, "Associated file processing").

NOTE This mechanism allows direct injection into the head element of an associated file of
type html with a value of Supplement in its AFRelationship entry. In such a use case, it is
therefore expected that the associated file is not a complete html file, but a fragment
(without head and body elements) that follows HTML syntax.

4.2.3 The ClassMap
If there exists a class map dictionary (as defined by the ClassMap key in the structure tree
root dictionary), then the processor shall iterate over all entries in that dictionary. For
each entry, the processor shall add a new entry in the derived CSS file using the key name
(prepended by a '.' after any escaping is expanded) as the CSS selector.

The value of each entry in the class map dictionary is an attribute object dictionary or an
array of attribute object dictionaries. The processor shall identify attributes that map to
CSS properties as described in 4.3.7, "Attributes", and for each, create a CSS declaration in
the derived CSS using the dictionary key as the property and using the value of this key
(converted into a string using common methods) as the declaration value.

If, after iterating over all attribute object dictionaries for a given key in the class map
dictionary, no appropriate attributes are located, the processor may either remove the
selector or provide an empty property list.

Handling the ClassMap in derivation is a two-step process. Attributes that represent
styling are derived into a CSS style sheet and later used as a class attribute of the derived
HTML element. Attributes that derive to HTML properties are output when processing PDF
structure elements as described in 4.3.6, "Structure element properties". When an array of
attribute object dictionaries is present, the processor shall respect order and process only
selected attributes as described in 4.3.7, "Attributes".

EXAMPLE

PDF Association

© 2019 PDF Association 7

PDF specifying class map

1 0 obj

<<

/Type /StructTreeRoot

/K [...] % PDF structure element Kids

/IDTree ... % ID tree mapping element IDs to PDF structure
elements

/RoleMap ... % RoleMap for the default namespace

/ParentTree ... % Mapping for page content to parent PDF
structure elements

/ClassMap 2 0 R % ClassMap for all elements

>>

2 0 obj % ClassMap dictionary

<<

/HeadingStyle

<<

/O /CSS-2.00

/text-align /center

/color /red

/font-family (Arial, Helvetica, sans-serif)

/font-size (40px)

>>

/ParaStyle

[

<<

/O /Layout

/Color [0 0 1] %blue

/BorderColor [0 1 0] %green

/TextAlign /Justify

>>

<<

PDF Association

© 2019 PDF Association 8

/O /CSS-2.00

/color /red

/font-family ("Times New Roman", Times, serif)

/font-size (12px)

>>

]

>>

CSS output

.HeadingStyle {

text-align: center; color: red;

font-family: Arial, Helvetica, sans-serif;

font-size: 40px;

}

.ParaStyle {

font-family: "Times New Roman", Times, serif;

font-size: 12px;

color: red; /*coming from the CSS-2.00 attribute object
dictionary and overrides the Color attribute defined in the
Layout attribute object dictionary*/

border-color: green; /*coming from the Layout attribute object
dictionary*/

}

4.2.4 Body
A body element shall be created immediately after the head element. If the Lang key is
present in the PDF’s document catalog dictionary, the lang attribute shall be added to the
body element with the value of the PDF document’s Lang entry.

EXAMPLE

<body lang="EN-US">

The children of the body element are created as described in 4.3, "PDF structure
elements".

If the PDF contains one or more elements in the Fields array of the document’s interactive
form dictionary, then a form element shall be created as a child of the body element with
an attribute, name, whose value shall be acroform.

EXAMPLE

PDF Association

© 2019 PDF Association 9

<form name="acroform" id="acroform"></form>

All other interactive form elements in the document are derived to corresponding HTML
form fields. They shall refer to the acroform using a "form" attribute of such HTML element
in the derived HTML.

EXAMPLE

<input name="FirstName" form="acroform"/>

4.3 PDF structure elements
This subclause discusses processing of PDF’s logical structure.

4.3.1 General
As described in ISO 32000-2, 14.7.2, PDF structure elements are constructed in a
hierarchical fashion, referred to as the structure tree. Processing of the structure tree shall
begin with the root element and proceed in a depth-first, pre-order traversal of each
element and its children. The root element is handled according to 4.2.2, "The structure
tree root".

NOTE The processing order for nodes specifically indicates pre-order for the depth-first
traversal which is more explicit than logical content order.

4.3.2 Common processing
Any of the nodes in the structure tree may have one or more associated files specified via
the AF key in the PDF structure element’s dictionary. Conforming processors may use such
associated files to add information to the PDF structure element’s HTML output, or to
replace the PDF structure element’s HTML output (see 4.6, "Associated file processing").

4.3.2.1 Processing PDF structure elements
This sub-clause defines how a processor shall process PDF structure elements. Situations
that require special treatment are defined in 4.3.4, "Ensuring valid HTML".

4.3.2.2 When the PDF structure element does not use an explicit namespace
If the RoleMap entry is present in the structure tree root, and if it contains an entry
matching the structure type of the PDF structure element, the processor shall apply role
mapping – possibly transitively – until no further role mapping can be applied, as
described in ISO 32000-2, 14.8.6.2 "Role maps and namespaces". Based on the resulting
structure type – which by definition has to be a PDF 1.7 standard structure type for any
tagged PDF – the processor shall select corresponding HTML output (see 4.3.3, "Mapping
PDF structure element types to HTML elements").

The processor shall add a data-pdf-se-type-original attribute with a value representing
the original PDF structure element type before role mapping to the HTML element. If more
than one role mapping is applied, the processor shall concatenate all PDF structure
element types in the data-pdf-se-type-original attribute separated by space characters.

PDF Association

© 2019 PDF Association 10

NOTE Extra data attributes with PDF structure types are a unified way to preserve
information from PDF, and might help HTML developers to understand and rely on the
original structure that would otherwise be lost during derivation.

A data-pdf-se-type attribute with value of the PDF standard structure type’s key name
shall be added to the HTML element.

EXAMPLE

PDF RoleMap definition and fragment of tagged pdf

1 0 obj

<<

/Type /StructTreeRoot

/RoleMap 2 0 R % RoleMap for the default namespace

. . .

>>

2 0 obj % RoleMap dictionary

<<

/InlineShape /Shape

/Shape /Figure

>>

. . .

<InlineShape> {CONTENT}

HTML output

<img data-pdf-se-type="Figure" data-pdf-se-type-
original="InlineShape Shape" href="image.jpg"/>

4.3.2.3 When the PDF structure element uses an explicit namespace
If the PDF structure element uses either of the standard structure namespaces for PDF 1.7
or PDF 2.0 – as defined in ISO 32000-2, 14.8.6.1 "Namespaces for standard structure types
and attributes" – then based on its structure type, choose an output HTML element
according to "Table 1: Mapping the PDF standard structure element namespace structure
types to HTML".

A data-pdf-se-type attribute with value of the PDF standard structure type’s key name
shall be added to the HTML element.

If the PDF structure element uses the MathML namespace – as defined in ISO 32000-2,
14.8.6.3 "Other namespaces" – then the processor shall use its structure type directly as a
MathML element.

PDF Association

© 2019 PDF Association 11

If the PDF structure element uses the HTML namespace the processor may use its
structure type directly as the HTML element.

NOTE 1 Direct usage of the HTML namespace raises the same security concerns that apply
to HTML in general. See Annex A for additional guidance.

If the PDF structure element uses any other namespace – transitively, if applicable – the
processor shall apply role mapping until encountering a structure type that belongs to
one of the sets of structure types described above – PDF 1.7, PDF 2.0, MathML or optionally
HTML – and then determine the HTML element to use accordingly.

NOTE 2 This implies that not all role mappings on a given element are processed if one of
the defined sets is encountered first.

4.3.3 Mapping PDF structure element types to HTML elements
Processors shall use the mappings given in "Table 1: Mapping the PDF standard structure
element namespace structure types to HTML" when determining which HTML element to
use when processing PDF structure element types within the PDF 1.7 and PDF 2.0 standard
structure namespaces (see ISO 32000-2, 14.8.6.1, "Namespaces for standard structure
types and attributes"). In many cases a straightforward mapping from PDF to HTML
structure is inadequate for full conveyance of semantics; clause 4.3.5, "Special cases"
provides processing requirements accommodating each of these cases.

Table 1: Mapping the PDF standard structure element namespace structure types to HTML

PDF 1.7 SSTs PDF 2.0 SSTs HTML5 element

Annot Annot -

See 4.4.8.2, "Annotations (other than of type Link
and Widget)".

NOTE 1 This version of this document
does not address the Annot structure
element type.

Art – article

– Artifact -

NOTE 2 The structure element is not
output, nor is any of its content or
descendent elements (see 4.3.5.7,
"NonStruct, Private and Artifact").

– Aside aside

BibEntry – p

PDF Association

© 2019 PDF Association 12

PDF 1.7 SSTs PDF 2.0 SSTs HTML5 element

BlockQuote – blockquote

Caption Caption caption / figcaption / div

See 4.3.5.2, "Caption".

Code – code

Document Document div

– DocumentFragment div

Div Div div

– Em em

– FENote div

Figure Figure figure

See 4.3.5.4, "Figure, Formula".

Form Form See 4.4.8.3, "Widget annotations".

Formula Formula figure

See 4.3.5.4, "Figure, Formula".

H H h1..h6 / p

Based on nesting level; see 4.3.5.1, "H, H1..Hn".

H1..H6 H1.. H6 h1..h6 / p

See 4.3.5.1, "H, H1..Hn".

– H7..Hn p

Index – section

L L ul / ol / dl

PDF Association

© 2019 PDF Association 13

PDF 1.7 SSTs PDF 2.0 SSTs HTML5 element

See 4.3.7.4, "List standard structure attribute
owner" and 4.3.5.5, "L".

Lbl Lbl label / span / div / dt

See 4.3.5.3, "Lbl" and 4.3.7.4, "List standard
structure attribute owner".

LBody LBody div / dd

See 4.3.7.4, "List standard structure attribute
owner"; see 4.3.5.5.2, "L as description list" for a
description list.

LI LI li / div

See 4.3.7.4, "List standard structure attribute
owner"; see 4.3.5.5.2, "L as description list" for a
description list.

Link Link a

NonStruct – -

NOTE 3 The structure element is not
processed, though content it contains is
processed normally. See 4.3.5.7,
"NonStruct, Private and Artifact".

Note – p

P P p

Part Part div

Private - -

NOTE 4 The PDF structure element is not
output, nor is any of its content or
descendent elements. See 4.3.5.7,
"NonStruct, Private and Artifact".

Quote – q

PDF Association

© 2019 PDF Association 14

PDF 1.7 SSTs PDF 2.0 SSTs HTML5 element

Reference - a

RB RB rb

RP RP rp

RT RT rt

Ruby Ruby ruby

Sect Sect section

Span Span span

– Strong strong

– Sub span

Table Table table

TBody TBody tbody

TD TD td

TFoot TFoot tfoot

TH TH th

THead THead thead

– Title div

TOC – ol

TOCI – li

TR TR tr

Warichu Warichu span

WT WT span

PDF Association

© 2019 PDF Association 15

PDF 1.7 SSTs PDF 2.0 SSTs HTML5 element

WP WP span

4.3.4 Ensuring valid HTML
PDF and HTML use different methods of expressing certain structures and restrict these
structures in different ways.

To achieve interoperable reuse of PDF content in syntactically valid HTML, the derivation
process has to account for these differences.

EXAMPLE

PDF allows the following as a valid nesting of standard structure elements:

<Table>{

<TR>{

<TH> {

<H1> { Heading inside TH}

}

}

}

As shown below, direct derivation of the above example would not produce valid HTML
because the h1 element is not allowed as a descendant of the th element.

HTML output

<table>

<tr>

<th>

<h1>Heading inside TH</h1>

</th>

</tr>

</table>

PDF allows even more complex structures that don’t have a semantically equivalent
expression in HTML.

EXAMPLE

PDF allows tables to include captions which may themselves include tables:

<Table>{

PDF Association

© 2019 PDF Association 16

<TR> {..}

<Caption> {

<Table> {..}

}

}

Whereas in HTML, even though the caption element is allowed as a descendant of a table
element, the caption is required to be the first table element cannot include another
table as its descendent.

HTML output

<table>

<tr>..</tr>

<caption>

<table>..</table>

</caption>

</table>

ISO 32000-2, 14.8.4.2 "Nesting of standard structure elements" defines rules that apply to
standard PDF structure elements and the context in which they can be used.

Additionally PDF structure elements with a type of Link or Form are special cases
according to 4.3.5.8, "Links and references" and 4.3.5.9, "Forms".

4.3.5 Special cases
4.3.5.1 H, H1..Hn
HTML does not directly include support for heading levels above h6, which means that H7
and beyond PDF structure element types should typically map to p. To correctly convey
the intended semantics, the document creator may use WAI-ARIA attributes. Processors
may output such attributes automatically (even if not present in the document).

EXAMPLE

PDF

<H7 "O=ARIA-1.1" "role=heading" "aria-level=7" > { Heading 7 }

HTML output

<p role="heading" aria-level="7">Heading 7</p>

PDF Association

© 2019 PDF Association 17

4.3.5.2 Caption
4.3.5.2.1 Captions of Figures and Formulas
If a Caption structure element is a direct child or an immediate sibling of a Figure or
Formula structure element, then it shall be mapped to the HTML element figcaption and
shall become the direct and first child of the corresponding HTML figure element.

4.3.5.2.2 Captions of Tables
If a Caption structure element is a direct child or an immediate sibling of a Table structure
element, then the output HTML element shall be caption and it shall become the direct
and first child of the corresponding HTML table element.

If, using this method, a caption element containing a table or ol/ul /dl becomes a child of
another table element - to avoid invalid HTML, a processor may decide to:

 Move the table or ol/ul/dl sub-structure from within the Caption to immediately
follow the parent table. If not allowed to be nested there continue to move up in the
tree, or

 derive all PDF structure elements to span if visual representation is more critical.

EXAMPLE

Valid PDF structure without a semantic equivalent in HTML

<Part> {

<Table> {

<Caption> {

Some text

<Table> { [table inserted into the caption] }

}

<TR>

}

}

HTML output

<div>

<table>

 <caption>

 Some Text

 </caption>

 <tr> </tr>

 </table>

<table> </table>

PDF Association

© 2019 PDF Association 18

</div>

4.3.5.3 Lbl
4.3.5.3.1 Lbl within a LI (list item)
If deriving L to ol or ul, and if a child LI structure element contains a Lbl structure element
as its first child, then:

 the ul or ol elements derived from the parent L’s structure element shall have an
additional style attribute with value list-style-type:none.

 Lbl is mapped to span if it has only textual content (no other child structure
elements)

 Lbl is mapped to div, if it contains other structure elements

EXAMPLE

PDF

<L> {

 {

 <Lbl> { - }

 <LBody> { text 1}

}

}

HTML output

<ul style="list-style-type:none;">

-text 1

If deriving L to dl, the Lbl structure element is derived to a dt element.

4.3.5.3.2 Lbl within a Form
If a Lbl structure element is contained in a Form structure element, then:

 Lbl is mapped to div if it contains one or more of the following structure elements:
Form, Figure, Formula or Caption as a direct child

 Lbl is mapped to label otherwise. If the PDF 2.0 namespace is used, an additional
for attribute shall be added to the HTML label element (see 4.3.5.9.2, "Form field
processing for PDF 2.0 structure elements").

4.3.5.4 Figure, Formula
If a Figure or Formula structure element is a direct child of one of Sub, P, H, Hn, H, Em,
Strong or Span PDF structure element it shall not be mapped to any HTML element and
the processor shall continue with its direct children, which shall themselves be mapped to
span.

PDF Association

© 2019 PDF Association 19

EXAMPLE

PDF

<P> {

<Figure> {

 <Caption> {Figure Caption}

CONTENT [The actual image or illustration converted to
star.jpg during derivation]

}

}

HTML output

<p>Figure Caption</p>

4.3.5.5 L (list)
4.3.5.5.1 L within L
If an L structure element is a direct child of a L structure element, then the child L element
shall be output to HTML as the direct child of a newly created li element.

EXAMPLE

PDF

<L "ListNumbering=Ordered"> {

<L> {

 {Item 1.1}

}

 {Item 2}

}

HTML output

 Item 1.1

Item 2

PDF Association

© 2019 PDF Association 20

4.3.5.5.2 L as description list
If an L structure element is derived to dl (see. 4.3.7.4, "List standard structure attribute
owner") then its child elements shall be derived as follows:

 LI to div
 Lbl to dt
 LBody to dd

EXAMPLE

PDF

<L "ListNumbering=Description"> {

 {

 Lbl { First}

 LBody { the first item}

 }

 {

 Lbl {Second}

 LBody {the second item}

 }

}

HTML output

<dl>

 <div>

 <dt>First</dt>

 <dd>the first item</dd>

 </div>

 <div>

 <dt>Second</dt>

 <dd>the second item</dd>

 </div>

</dl>

PDF Association

© 2019 PDF Association 21

4.3.5.5.3 L within P or Sub
If an L structure element is a direct child of a P or a Sub structure element the processor
shall close all the HTML elements until the first parent that allows nested ol or ul or dl
elements. The derived ol or ul or dl will become a child of the parent, thereafter repeating
the same structure with the first sibling of the L element.

EXAMPLE

PDF

<Part> {

 <P> {

 <P> {

 <P> {Actual content before the list}

<L "ListNumbering=Ordered">

<P> {Actual content after the list}

}

}

}

HTML output

<div>

<p><p><p>Actual content before the list</p></p></p>

. . .

<p><p><p>Actual content after the list</p></p></p>

</div>

4.3.5.6 TH
If any heading structure element (H, H1..Hn) is a child of a TH structure element then that
heading structure element shall be mapped to an HTML p element:

EXAMPLE

PDF

<Table>{

<TR>{

<TH> {

<H1> { Heading inside TH}

}

}

}

PDF Association

© 2019 PDF Association 22

HTML output

<table>

<tr>

<th>

<p>Heading inside TH</p>

</th>

</tr>

</table>

If a Sect structure element is the child of a TH structure element, then all such Sect
structure elements shall be mapped to div in the output HTML.

EXAMPLE

PDF

<Table>{

<TR>{

<TH> {

<Sect> {

 <Sect> {

<L> { list}

}

P {.. }

}

}

}

}

HTML output

<table>

<tr>

<th>

<div>

<div>

 …

</div>

<p> … </p>

PDF Association

© 2019 PDF Association 23

</div>

</th>

</tr>

</table>

4.3.5.7 NonStruct, Private and Artifact
PDF structure elements of type NonStruct shall not be output to HTML, but the content
they enclose (including child elements, if any) shall be processed as though it were
contained in the NonStruct structure element’s parent structure element directly.

PDF structure elements of type Private or of type Artifact shall not be output, nor shall
any of their content or descendent elements.

4.3.5.8 Links and references
If the standard PDF structure element type is Link or Reference, then the HTML element
shall be considered as a, (i.e., an HTML anchor element). The value of the href attribute for
the HTML shall come from the annotation dictionary of the first object reference (OBJR)
associated with an annotation with a Subtype key whose value is Link. If the annotation
dictionary has an A key, and its value is an action of type URI, then the value of the URI key
shall be used, or if the annotation dictionary has a Dest key and its value is a structured
destination (ISO 32000-2, 12.3.2.3), the id from that destination as created according to
4.3.6, "Structure element properties" shall be used.

If a Link structure element is a direct child of a Reference structure element then the
processor shall output only one HTML element with href set from the annotation
dictionary represented by the Link.

4.3.5.9 Forms
Both the PDF 1.7 standard structure namespace and the PDF 2.0 standard structure
namespace support the inclusion of form fields in the logical structure. The definition of
the PDF structure element type Form, however, differs between the two namespaces.
Accordingly, PDF structure elements of type Form are not derived to HTML form elements
as such, as detailed in this subclause.

NOTE 1 HTML requires that form fields are always descendants of a form element, whereas
there is no notion of an equivalent structure element in the PDF 1.7 or PDF 2.0 standard
structure namespaces. Consequently, the HTML form element is inserted in a generic
fashion that ensures that any PDF structure element of type Form will always be derived to
an equivalent HTML form field that is a descendant of a form element.

NOTE 2 It is possible to use PDF structure elements and attributes in the HTML namespace
to define forms and form fields that translate more directly into HTML elements and
element structures. If form-related PDF structure elements from the PDF 2.0 standard
structure namespace or the PDF 1.7 standard structure namespace on one side and from
the HTML namespace on the other side were mixed inside the same document, the
conversion result could be inconsistent.

PDF Association

© 2019 PDF Association 24

4.3.5.9.1 Form field processing for PDF 1.7 structure elements
PDF structure elements of type Form as defined in the PDF 1.7 standard structure
namespace always only contain one object reference (OBJR) to a widget annotation and
can’t contain any other content. Consequently, the derivation algorithm is based on the
widget annotation.

PDF structure elements of type Form as defined in the PDF 1.7 standard structure
namespace shall be processed as defined in 4.4.8.3, "Widget annotations".

4.3.5.9.2 Form field processing for PDF 2.0 structure elements
PDF structure elements of type Form as defined in the PDF 2.0 standard structure
namespace always contain one object reference (OBJR) to a widget annotation, and can
also, but are not required to, contain other content, including one or several PDF structure
elements of type Lbl. Consequently, the derivation algorithm is based on the widget
annotation, and other content inside the PDF structure element of type Form, with special
handling of content inside PDF structure elements of type Lbl.

If a PDF structure element of type Form has descendants that are structure elements of
type Lbl, these Lbl structure elements shall be created as label elements, as defined in
4.3.2.1, "Processing PDF structure elements". A for attribute shall be added each label
element, whose value shall be the same as that of the id attribute of the HTML form field
element created according to 4.4.8.3, "Widget annotations".

EXAMPLE

PDF

<Form> {

<Lbl>{Last name:}

OBJR [widget annotation of single line text field]

}

HTML output

<label for="bd43-05d-11e7">Last name:</label>

<input id="bd43-05d-11e7" type="text" name="lastname">

4.3.5.9.3 Form field processing for PDF structure elements from the HTML
namespace

When using form field related structure elements from the HTML namespace, no
processing as defined in 4.4.8.3, "Widget annotations". shall be carried out. All attributes
necessary for each HTML form field must be present as structure attributes in the HTML
namespace.

When using form field related structure elements from the HTML namespace, structure
elements of type form shall be present as necessary to ensure that all form fields in the
derived HTML are descendants of a form element as required by HTML.

PDF Association

© 2019 PDF Association 25

4.3.6 Structure element properties
Structure element properties convey data whose processing is critical to complete and
accurate conveyance of semantic meaning.

4.3.6.1 General
If the structure element dictionary contains an ID entry, its value shall be used as the value
of the id attribute on the HTML element.

If a structured destination (see ISO 32000-2, 12.3.2.3) references the structure element
dictionary and does not contain an ID entry, then a unique identifier value (generated in
an implementation-dependent manner) shall be used as the value of the id attribute on
the HTML element.

NOTE 1 This id is used when the Link annotation with the structure destination is
processed.

If the PDF structure element has any classes of attributes (via the C key in the structure
element dictionary), then those classes shall be used as the value for an attribute class on
the HTML element. If C is an array, then the value of the class attribute shall be
constructed as a concatenation of classes separated by a space character. Additionally the
processor shall output attributes that map to HTML properties associated with the classes
according to 4.3.7.2, "Deriving structure attributes to HTML attributes".

If the PDF structure element has an A key in its structure element dictionary, then its
attributes shall be handled as described in 4.3.7, "Attributes", and shall be output as
attributes of the HTML element or as inline styling properties.

NOTE 2 It is important to process classes of attributes before the attributes. ISO 32000-2
14.7.6.2 requires that if both the A and C entries are present and a given attribute is
specified by both, the one specified by the A entry takes precedence.

4.3.6.2 Lang
If the structure element dictionary contains a Lang entry and if the entry’s value is not an
empty string, then its value shall be used as the value of the lang attribute on the HTML
element.

4.3.6.3 Replacement text
If the structure element dictionary has an ActualText key (see ISO 32000-2, 14.9.4),
contents of the key shall be used as the content of the HTML element, and the children of
the PDF structure element shall be ignored.

EXAMPLE

PDF

<P> {

Dru {

{k-}

PDF Association

© 2019 PDF Association 26

}

ker

}

HTML output

<p>Dru c ker</p>

4.3.6.4 Alternate description
When processing PDF structure elements of type Figure or Formula and their structure
element dictionary has an Alt key (see ISO 32000-2, 14.9.3), then except in those cases
specified in 4.3.5.4, the contents of this key shall be used as the HTML element’s alt
attribute.

EXAMPLE

PDF

<Figure "Alt=six-point star"> {

CONTENT [The actual image or illustration converted to
star.jpg during derivation]

}

HTML output

<figure> </figure>

4.3.6.5 Expansion text
If the structure element dictionary has an E key that is not an empty string (see ISO 32000-
2, 14.9.5), then the HTML element shall be abbr whose contents are the contents of the
PDF structure element and a title attribute whose value is the UTF-8 encoded value of the
expansion text.

EXAMPLE

PDF

<P> {

 {Dr.}

 Jones

}

HTML output

<p><abbr title="Doctor">Dr.</abbr> Jones </p>

4.3.7 Attributes
Additional information is often associated with individual PDF structure elements through
the use of structure attributes. In some cases, the presence of a specific attribute changes

PDF Association

© 2019 PDF Association 27

the selected html element, but in most cases PDF structure element attributes are
mapped to HTML attributes or CSS properties.

4.3.7.1 General
Only those standard structure attributes specifically referenced in this document shall be
processed. Additional format specific attributes and owners may be present, and the
processor may decide to output them.

The O key (see ISO 32000-2, Table 376, "Standard structure attribute owners") and its
value shall not be output. If the O key has a corresponding value of NSO, then the NS key
and its value shall not be output.

Whenever an array of attributes is defined the processor shall process attributes in the
following sequence:

1. List attribute owner
2. Table attribute owner
3. Layout attribute owner
4. HTML attribute owner
5. CSS attribute owner
6. ARIA attribute owner

NOTE 1 The sequence guarantees that most significant attributes are processed last.

NOTE 2 When deriving attribute values from PDF to HTML or CSS, the necessary
conversion to lowercase shall be applied and only those valid in html shall be processed

4.3.7.2 Deriving structure attributes to HTML attributes
For each PDF structure element attribute mapping to an HTML attribute, the processor
shall use the dictionary key as the name of an attribute on the HTML element and the
value of the key (converted into a string using common methods) as the value of that
attribute.

4.3.7.3 Deriving structure attributes to CSS properties
For each attribute derived to a CSS property, the processor shall create a CSS declaration
using the dictionary key as the property and the value of the key (converted into a string
using common methods) as the property value.

A style attribute for the HTML element shall be created and all CSS declarations in the
current PDF structure element shall be concatenated into a string, delimited by
semicolons as necessary, and the string shall be used as the value of the style attribute.

4.3.7.4 List standard structure attribute owner
If the list is ordered, the L shall be derived to ol. If the value of the ListNumbering
attribute is Description the L shall be derived to dl (see 4.3.5.5.2, "L as description list"),
otherwise it shall be derived to ul.

PDF Association

© 2019 PDF Association 28

The attributes ContinuedList and ContinuedFrom shall not be processed into HTML
unless an implementation is provided (e.g., equivalent CSS or JavaScript) to
accommodate their semantics.

NOTE To achieve equivalent effects in an HTML, the author can provide equivalent CSS or
JavaScript mechanisms.

4.3.7.5 Table standard structure attribute owner
"Table 2: Mapping Table structure type attribute owners to HTML attributes" shows the
mapping from the standard table attributes to HTML attributes that shall be used by the
processor when deriving Table structure element types to corresponding html elements.

"Table 3: Mapping standard layout attributes of Table structure elements to CSS
properties" shows the mapping from the standard layout attribute belonging to Table
structure element to CSS properties that shall be used by the processor when deriving
Table structure element types to corresponding html elements.

Table attributes not listed in Table 2 or Table 3 shall not be processed.

Table 2: Mapping Table structure type attribute owners to HTML attributes

Standard Table attribute HTML attribute (output)

ColSpan colspan

RowSpan rowspan

Headers headers

NOTE The mapping of the Headers attribute relies
on the fact, that existing ID attributes for PDF
structure elements are mapped to the id attribute of
the th or td elements derived from TH or TD
structure elements.

Scope scope

Short abbr

Table 3: Mapping standard layout attributes of Table structure elements to CSS properties

Standard Table attribute CSS property (output)

TBorderStyle border-style

Apply any necessary conversion to lowercase

PDF Association

© 2019 PDF Association 29

Standard Table attribute CSS property (output)

TPadding padding

Apply any necessary conversion to pixels

EXAMPLE

PDF

<Table> {

 <TR> {

 <TH "RowSpan=2" "TBorderStyle=Dotted"> { Age }

 <TH "ColSpan=2" "TBorderStyle=Dotted"> { Names}

}

<TR> {

<TH> { John }

<TH> { Bob }

}

<TR> {

<TH> { 25-30 }

<TD> { 100 }

<TD> { 500 }

}

}

HTML output

<table>

<tr>

<th style="border-style:dotted;" rowspan="2">Age</th>

<th style="border-style:dotted;" colspan="2">Names</th>

</tr>

<tr><th>John</th><th>Bob</th></tr>

<tr><th>25-30</th><td>100</td><td>500</td></tr>

</table>

PDF Association

© 2019 PDF Association 30

4.3.7.6 Layout standard structure attribute owner
The TextPosition attribute specifies whether a PDF structure element is subscript or
superscript.

• If the TextPosition attribute is Sup, the PDF structure element shall map to sup.

• If the TextPosition attribute is Sub, the PDF structure element shall map to sub.

"Table 4: Mapping layout standard structure attribute owner to CSS properties" shows the
mapping from the standard layout attribute to CSS properties that shall be used by the
processor when deriving PDF structure element types to corresponding HTML elements.

Layout attributes not listed in Table 4 shall not be processed.

Table 4: Mapping layout standard structure attribute owner to CSS properties

Standard Layout
attribute

CSS property (output)

Placement If value is Block or Inline, the derived CSS property is display
and values are block or inline

If value is Before, Start or End, the derived CSS property is
float with values left or right

Writing Mode writing-mode

Apply any necessary conversion to CSS property values
from PDF names

BackgroundColor background-color

Apply any necessary conversion to HTMLRGB values

BorderColor border-color

Apply any necessary conversion to HTML RGB values

BorderStyle border-style

Apply any necessary conversion to lowercase

PDF Association

© 2019 PDF Association 31

Standard Layout
attribute

CSS property (output)

BorderThickness border-width

Apply any necessary conversion to pixels

Padding padding

Apply any necessary conversion to pixels

Color color

Apply any necessary conversion to HTML RGB values

SpaceBefore (interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-top properties to
simulate the expected behavior

SpaceAfter (interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-bottom properties
to simulate the expected behavior

StartIndent (interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-left properties to
simulate the expected behavior

EndIndent (interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-right properties to
simulate the expected behavior

TextIndent text-indent

Apply any necessary conversion to pixels

PDF Association

© 2019 PDF Association 32

Standard Layout
attribute

CSS property (output)

TextAlign text-align

Apply necessary conversion to CSS property values from
PDF names

TPadding padding

Apply any necessary conversion to pixels

LineHeight line-height

Apply necessary conversion to CSS property values from
PDF names

BaselineShift baseline-shift

Apply any necessary conversion to pixels

TextDecorationColor text-decoration-color

Apply necessary conversion to HTML RGB values

TextDecorationThickness There is no equivalent CSS property, therefore the
processor should use other properties (e.g., border-width)
to achieve the same visual and semantic expression

TextDecorationType text-decoration

A LineThrough value shall be derived to line-through

Apply necessary conversion to lowercase

RubyAlign ruby-align

Apply necessary conversion to CSS property values from
PDF names

RubyPosition ruby-position

Apply necessary conversion to CSS property values from
PDF names

PDF Association

© 2019 PDF Association 33

4.3.7.7 HTML
If the value of the O key of an attribute object dictionary begins with the (case-sensitive)
string "HTML-", then the dictionary shall be considered as containing HTML attributes and
processed according to 4.3.7.2, "Deriving structure attributes to HTML attributes"..

4.3.7.8 CSS
If the value of the O key of an attribute object dictionary begins with the (case-sensitive)
string "CSS-", then this dictionary shall be considered as containing CSS attributes and
processed according 4.3.7.2, "Deriving structure attributes to HTML attributes"..

EXAMPLE

PDF

<H1 "O=CSS-3.00" "color=red" "font-size=12px" > { Heading 1 }

HTML output

<h1 style="color: red; font-size: 12px;">Heading 1</h1>

4.3.7.9 ARIA roles
If the value of the O key of an attribute object dictionary begins with the (case sensitive)
string "ARIA-", then this dictionary shall be considered as containing ARIA attributes and
processed according to 4.3.7.2, "Deriving structure attributes to HTML attributes"..

4.3.7.10 Others
Processing of attributes with any other value of the O key is implementation dependent
and therefore beyond the scope of this document. To achieve consistent output,
implementations should not override attributes defined in ISO 32000-2.

4.4 Processing of a content element
The child elements of structure elements that reference content items consist of the
various types of PDF graphic objects (ISO 32000-2, 8.2): path, text, XObject, inline image
and shading. Processors shall handle content items based on the use case:

 Where visual fidelity is important (infographics, charts etc.) a processor shall process
content items as a group by either rasterizing all items and incorporating the result
as a single raster image or by converting to SVG and include the output in the HTML.
Example of such usage might be content elements within Figure structure element.

 For general purposes each content element object type shall be processed
according to the provisions of this subclause.

4.4.1 Paths
A processor should choose one of the following methods of handling a content element
that represents one or more path objects:

PDF Association

© 2019 PDF Association 34

 simply rasterize the paths and then incorporate it into the HTML as a single raster
image (see 5.2.4.4. Image XObjects and inline images), or

 convert to SVG and include it either directly in the HTML or via an img element, or
 represent it as a canvas object.

If the paths are irrelevant to the reuse application the processor may decide not to output
path objects.

4.4.2 Text
The text of the structure content element shall be converted to UTF-8 (see 4.2.1, "Head"),
and derived as the content of the HTML element.

4.4.3 Image XObjects and inline images
The image content shall be derived into an img HTML element. The width and height
attributes on the img element shall be present and shall represent the logical size of the
image as it would be displayed when rendering the PDF page at 100%, assuming a default
viewing distance of an arm’s length and page sizes typically used for reading at arm’s
length.

NOTE 1 According to HTML5, width and height are specified without units and imply pixels
(px). Pixels are defined in "CSS Values and Units Module Level 3" as 1/96 inch at a viewing
distance of an arm’s length (28 inch or 0.712 m). The values for the width and height
attributes do not have to match the actual number of pixels in the horizontal and the
vertical direction in the image file. If the ratio between the width and height attributes
differs from the actual number of pixels in the horizontal and the vertical direction in the
image file, the image will be distorted accordingly when rendered.

The manner in which image data is encoded in PDF in many regards differs from how
image data is encoded in file formats such as GIF, PNG or JPEG, or in SVG. When
converting from PDF image data to an OWP-supported file format, a processor should
choose the most suitable file format, and should take into account the following aspects:

 the bit depth, whether by not using GIF or using dithering or other mechanisms
 the colour appearance, whether by converting to a device colour space that matches

the rendering system’s or device’s characteristics or by embedding a suitable ICC
profile

 the compression; using lossy compression only if no additional loss of information is
incurred

 the effect of any Mask or SMask entries applicable to the image data in the PDF

Image XObjects that contain an ImageMask entry with a value of true shall be encoded
such that the current colour in the current graphic state is taken into account, and the
masking effect shall be represented appropriately in the file format to which the image is
converted.

If the processor is unable to convert the data, it shall place some form of placeholder
image, of the same logical (display) size, in the output HTML.

https://docs.google.com/document/d/1aZcGKxIX4EKPk7kh7Iptbyjiz66lBWfVqXfsMr7N0jU/edit#heading=h.19c6y18

PDF Association

© 2019 PDF Association 35

NOTE 2 This ensures that the HTML will at least layout the same way as it would if the
image were present.

The value of the src attribute on the output img element shall be the URL to the image
data that the processor has prepared.

NOTE 3 Since the handling of the image data is implementation-dependent, the URL can
be any valid URL including absolute (with or without prefix) or data URLs (RFC 2397).

4.4.4 Form XObjects
A processor shall process a content element that represents a Form XObject as a grouping
of other elements. Each of those elements shall be processed as per 4.4, "Processing of a
content element".

4.4.5 Shadings
A processor should choose one of two methods of handling a content element that
represents a shading:

 simply rasterize the shading and then incorporate it into the HTML as a single raster
image as per 4.4.3, "Image XObjects and inline images", or

 process the shading as a vector element (path) and then address as per 4.4.1, "
Paths".

If the shadings are irrelevant to the reuse application the processor may decide not to
output shadings.

4.4.6 Artifacts
The derivation algorithm intentionally ignores artifacts not contained in the structure tree
(see 4.3.5.7, "NonStruct, Private and Artifact").

4.4.7 Handling marked content sequences
4.4.7.1 Lang attribute in a marked content sequence
When a marked content sequence contains the Lang attribute, the content enclosed by
this marked content sequence shall be enclosed in a span element having a lang attribute
whose value is the UTF-8 encoded value of the Lang attribute.

4.4.7.2 ActualText attribute in a marked content sequence
When a marked content sequence contains the ActualText attribute, the content
enclosed by this marked content sequence shall be replaced by the UTF-8 encoded value
of the ActualText attribute and shall be enclosed in a span element.

4.4.7.3 Alt attribute in a marked content sequence
When a marked content sequence contains the Alt attribute, the content enclosed by this
marked content sequence shall be enclosed in a span element having an alt attribute
whose value is the UTF-8 encoded value of the Alt attribute.

PDF Association

© 2019 PDF Association 36

4.4.7.4 E attribute in a marked content sequence
When a marked content sequence contains the E attribute, the content enclosed by this
marked content sequence shall be enclosed in an abbr element having a title attribute
whose value is the UTF-8 encoded value of the E attribute.

4.4.7.5 Multiple attributes in a marked content sequence
When a marked content sequence contains more than one of the Lang, ActualText, Alt or
E attributes, only one span element shall be created. If the E attribute is one of these
attributes, the abbr element shall be created inside the span element, with the content
inside the marked content sequence or, in the case where an ActualText attribute is
present, the UTF-8 encoded value of the ActualText attribute as its content.

4.4.8 Processing of an object reference (OBJR)
4.4.8.1 XObjects
Object references in structure elements of type XObject shall be processed according to
4.4.4, "Form XObjects".

4.4.8.2 Annotations (other than of type Link and Widget)
Handling of annotations other than Links and Fields/Widgets will be addressed in a future
version of this specification.

NOTE All other annotation types are out of scope for this document.

4.4.8.3 Widget annotations
Object references in structure elements of type Form reference widget annotations. Based
on the type of the form field it belongs to, a widget annotation will be processed
differently.

HTML provides different types of elements for different types of form fields, such as
button, input, select and textarea, which are collectively referred to as HTML form fields.

Widget annotations that are invisible or hidden, have a width or a height of 0 (zero), or are
completely outside the CropBox – or in the absence of the CropBox, completely outside
of the MediaBox – of the page on which they are present, or are not present on any page,
shall be processed with CSS property display set to none

4.4.8.3.1 Mapping widget annotations to HTML
Widget annotations shall be mapped to one of the following HTML elements. Additional
HTML attributes and inner HTML shall be derived as defined in the following tables.

 Button (see "Table 5: Mapping widget annotations to button HTML elements")
 Input (see "Table 6: Mapping widget annotations to input HTML element")
 textarea (see "Table 7: Mapping widget annotations to the textarea HTML element")
 select (see "Table 8: Mapping widget annotations to select HTML element")

PDF Association

© 2019 PDF Association 37

Table 5: Mapping widget annotations to button HTML elements

Type of field type
attribute

Additional attributes

Push button field button

Submit button (Push button
with A (action) entry where the
S (subtype) entry's value is
SubmitForm);

The ExportFormat flag shall be
set to HTML

submit Map URL in F in SubmitForm action to
formaction attribute

Map GetMethod flag to formmethod
attribute with value get or post

Reset button (Push button with
A (action) entry with the S
(subtype) entry's value is
ResetForm)

reset

Import-data button (Push
button with A (action) entry
with the S (subtype) entry's
value is ImportData)

button button

NOTE Import-data is out of
scope for this document; if
encountered it is processed like
a regular Push button field

If the derived HTML element is button, then inner HTML shall be created with

 N appearance stream per 5.2.4. Processing of a content element
 CA entry from MK dictionary

Table 6: Mapping widget annotations to input HTML element

Type of field type
attribute

Additional processing

Check box button field checkbox If an Opt entry is present, map the
applicable entry to the value
attribute.

If an Opt entry is not present, map the
name in the Widget's normal

https://docs.google.com/document/d/1aZcGKxIX4EKPk7kh7Iptbyjiz66lBWfVqXfsMr7N0jU/edit#heading=h.3fwokq0

PDF Association

© 2019 PDF Association 38

Type of field type
attribute

Additional processing

appearance stream (as defined by a
value other than Off in the N
dictionary of the widget's AP
dictionary), to the value attribute.

If the AS entry’s value is not Off, set
the checked attribute

Radio button field

NOTE: The flag
RadiosInUnison is
not supported.

radio If an Opt entry is present, map the
applicable entry to the value
attribute.

If an Opt entry is not present, map the
name in the Widget's normal
appearance stream (as defined by a
value other than Off in the N
dictionary of the widget's AP
dictionary), to the value attribute.

If the AS entry’s value is not Off, set
the checked attribute

Single line text field text If the RichText flag is not set and RV
is not present, map V to value

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

If the RichText flag is set and RV is
present, additional inner HTML from
the RV entry shall be created.

Password text field (i.e. Single
line text field with the
Password flag set; multiline
text fields with Password flag
set are not supported, and will
be mapped as single line text
fields)

password Map V to value

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

PDF Association

© 2019 PDF Association 39

Type of field type
attribute

Additional processing

File select text field (i.e. Single
line text field with the
FileSelect flag set; multiline
text fields with FileSelect flag
set are not supported, and will
be mapped as single line text
fields)

file Map V to value

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

Choice field with Edit flag set text Map V to the value

Add list attribute referring to an id of
the associated datalist element (see
below)

Create sibling datalist with a unique
id property

Map Opt array values to inner option
elements inside datalist

NOTE As of today, datalist is
not supported in IE9 or
earlier or in Safari.

Table 7: Mapping widget annotations to the textarea HTML element

Type of field Additional processing

Multiline text
field

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

If RichText flag is set and RV is present, inner HTML from RV entry shall
be created; otherwise create inner HTML from V entry

Table 8: Mapping widget annotations to select HTML elements

Type of field Additional processing

PDF Association

© 2019 PDF Association 40

ListBox Set size to 3

Combo

If the derived HTML element is select, then:

• If Multiselect field is defined, add multiple HTML element

• Map the entries from the Opt entry of the form field to option inner HTML

• Map V and I to the attribute(s) selected in the corresponding option element(s)

4.4.8.3.2 Widget annotation attributes
Certain widget annotation attributes (see ISO 32000-2, "12.5.6.19 Widget annotations"), if
present, shall be added to the HTML form field element:

As local style attributes, using suitable CSS declarations:

 highlighting mode (H entry)
 border style (BS entry)
 border color (BC entry in the MK dictionary)
 background color (BG entry in the MK dictionary)
 text alignment as defined in the Q entry if applicable for the derived HTML element

As HTML attributes:

 ReadOnly (Ff entry) mapped to readonly
 Required (Ff entry) mapped to required
 The fully qualified form field name (as defined in ISO 3200-2, 12.7.4.2 "Field names")

mapped to name

4.5 ECMAScript
To achieve an equivalent experience in HTML as when processing forms in the PDF
context, the processor shall derive embedded ECMAscripts into HTML javascript when
deriving Widget annotations into HTML form fields. ECMAScript for PDF (see ISO 21757-1)
defines the set of static and dynamic objects available to PDF.

The recommended way is to develop a JavaScript library which provides implementations
of the ECMAScript objects. The implementation details are not part of this specification;
it's up to the developer to ensure the expected behavior. See Annex A "ECMA script
derivation guidance" for examples of implementation.

PDF Association

© 2019 PDF Association 41

4.6 Associated file processing
4.6.1 General
Each associated file’s file specification dictionary may either refer to an embedded file
stream or an external URL-based reference. If the file specification dictionary contains an
FS key with a value of URL and does not contain an EF entry, then it shall be handled as
"URL References" as described in all sub-clauses of 4.6, "Associated file processing". If the
file specification dictionary contains an EF entry, then it should be processed as
"Embedded Files" as described in all sub-clauses of 4.6, "Associated file processing".
The processor shall ignore all other file specification dictionaries.

While it is recommended to process associated files as described in this chapter, the
implementer may decide not to do so, or limit implementation only to certain media types
due to security concerns. See Annex A.

4.6.2 URL References
For URL References, the value of the F entry in the associated file’s file specification
dictionary is the URL that shall be used to refer to the external services. URL References
shall not target local files nor make use of the file URL scheme.

NOTE 1 File URL schemes are specified in RFC 1738, Uniform Resource Locators (URL). The
prohibition of file URL schemes implies that it is not possible to reference local files.

For Embedded Files, the URL shall be the value of the UF entry from the associated file’s
file specification dictionary.

NOTE 2 This requirement ensures that resources and associated files can reliably refer to
each other, for example CSS referring to an image to be used as a background.

4.6.3 Media types
The handling of an associated file, whether it is a URL Reference, or an embedded file shall
be based on its media type.

For URL References, the filename extension of the URL (see 4.6.2, "URL References") shall
be used in conjunction with "Table 9: Media types supported by embedded files " to
determine the media type of the associated file.

For embedded files, the media type shall be determined by the value of the Subtype key
of the embedded file stream dictionary that is the value of the EF key of the associated
file’s file specification dictionary.

"Table 9: Media types supported by embedded files" lists the known media types, their
filename extensions, what each represented and which of the following sub-clauses
provides more information about processing it.

If the file extension of the associated file is not one of the known extensions
corresponding to the media types specified in "Table 9: Media types supported by
embedded files " then the processor may process it or ignore it as it deems appropriate. A

PDF Association

© 2019 PDF Association 42

processor may support additional filename extensions and/or media types beyond those
in the table.

Table 9: Media types supported by embedded files

Media types Filename
extensions

Type of object Sub-
clause

text/html application/xhtml+xml .htm, .html, .xhtml HTML or
XHTML

4.6.4.2

text/css .css CSS 4.6.4.3

text/javascript
application/javascript

.js JavaScript 4.6.4.4

image/jpeg image/png image/gif .jpg, .jpeg, .png, .gif Images 4.6.4.5

image/svg+xml .svg SVG 4.6.4.6

application/mathml+xml .xml, .mathml MathML 4.6.4.7

4.6.4 Handling media types
4.6.4.1 General
When processing a structure element with an associated file, in some cases the associated
file will replace the otherwise generated HTML element while in others it will be additive:

 If the value of the AFRelationship key in the associated file’s file specification
dictionary is Alternative then the associated file serves as a replacement and all
children of the structure element shall be ignored.

 If the value of the AFRelationship key in the associated file’s file specification
dictionary is Supplement then the associated file serves as a supplemental and after
processing the associated file the processor shall continue with processing children
of the structure element.

In both cases all requirements for attribute processing (see 4.3.7, "Attributes") shall apply.

NOTE This enables an author to provide specific attributes on the output HTML elements
by having them present on the PDF structure element.

PDF Association

© 2019 PDF Association 43

Associated files with a value other than Alternative or Supplement for the AFRelationship
key in the associated file’s file specification dictionary may be ignored; the processor shall
continue with children of the structure element.

Multiple associated files shall be processed in the order in which they are stored in the
array of the AF key.

For security reasons, processors may choose to mitigate risks by ignoring categories of
Associated Files.

4.6.4.2 HTML
If the associated file is an URL Reference, then the processor shall add a link element to
the head element of HTML output, with attributes of rel (with a value of import) and href
(with a value that is the URL).

If the associated file is an Embedded File then the contents of the associated file’s
embedded file stream shall be added directly to the output HTML stream, taking the place
of the structure element that would normally have been generated.

NOTE This mechanism allows direct injection of an associated file of type HTML with
AFRelationship of Supplement into the output HTML stream. It is therefore expected that
the associated file is not a complete HTML file, but a portion that follows HTML syntax.

4.6.4.3 CSS
If the associated file is either a URL Reference or an Embedded File of type CSS, then the
processor shall add to the output HTML, immediately before the referencing HTML
element, a style element, whose contents shall consist of an @import declaration with a
value of the URL.

EXAMPLE

<style>@import url(specialtable.css);</style>

4.6.4.4 JavaScript
If the associated file is either a URL Reference or an Embedded File of type JavaScript,
then the processor may add to the output HTML, immediately after the referencing HTML
element’s closing tag, a script element with an attribute of src whose value is the URL and
no contents.

EXAMPLE

<script src="specialtable.js"> </script>

If the structure element with the associated file attached derives to script in the HTML
namespace (http://www.w3.org/1999/xhtml), then the HTML element shall be script. All
children of the structure element shall be ignored.

http://www.w3.org/1999/xhtml)
http://www.w3.org/1999/xhtml)

PDF Association

© 2019 PDF Association 44

4.6.4.5 Images
To incorporate images into the HTML output, regardless of whether the associated file is a
URL Reference or an Embedded File, an img element shall be added to the HTML output
with a src attribute whose value is the URL.

4.6.4.6 SVG
To incorporate SVG into the HTML output, regardless of whether the associated file is a
URL Reference or an Embedded File, an img element shall be added to the HTML with an
attribute of src whose value is the URL. If the structure element has a BBox structure
attribute (of any owner or namespace), then the height and width of that BBox shall be
written out, respectively, as height and width attributes on the img element. These
height and width attributes should be determined as described in 4.4.3, "Image XObjects
and inline images".

4.6.4.7 MathML
If the associated file is an Embedded File containing MathML then the contents of its
embedded file stream shall be added directly to the HTML output, taking the place of the
structure element that would normally have been output.

NOTE Since MathML is not supported by all user agents, a conforming processor may need
to take additional steps to ensure that it is presented as the author expected.

PDF Association

© 2019 PDF Association 45

Annex A: Security implications
(informative)

There are serious security concerns when it comes to derivation of PDF files to HTML. PDF
structures may contain information that can take advantage of the derivation process and
embed malicious code into derived HTML. One major concern is the fact that PDF files
may contain such code, and the process of derivation defined in this document does not
guarantee full control over output HTML. In the case of a public service that allowed users
to upload PDF files in order to experience in HTML form through derivation, an attacker
could leverage this case by uploading crafted PDF; derivation in itself does not prevent
creation of malicious HTML.

Examples of such scenarios may include:

 Embedded JavaScript could access a whole web page if the PDF is derived into a
<div>, facilitating the delivery of malicious information

 JavaScript could access cookies

It is therefore the responsibility of the developer to recognize security risks in each specific
implementation. While using derivation in an enclosed environment where the developer
controls the HTML viewing system, the risk might be considered as low. In cases such as,
allowing users to upload random PDF files to be served as HTML to other users or systems,
the developer should clearly apply stringent processing requirements.

PDF Association

© 2019 PDF Association 46

Annex B: ECMAscript derivation guidance
(normative)

It is not in the scope of this document to define precisely how PDF ECMAscript shall be
derived into JavaScript libraries for use with HTML. In this Annex we will provide guidance
and examples focusing on the most common functionality.

EXAMPLE app object represents the application, in desktop environment the application
works with several opened documents available through activeDocs property or require
interactivity with end user through the alert method. Desired functionality might be
different in an HTML environment and method activeDocs could always return 1 and
alert method could be implemented with window.alert() or with console.log() function.

A minimal app implementation could look like following code:

var app = new Object();

//properties

app.viewerVersion = 1;

app.viewerType = "Derivation";

//methods

app.response = function () { return null; };

app.beep = function (b) { };

app.alert = function (msg) {

window.alert(msg);

};

Each HTML form field should have its own Field JavaScript object that mimics the source
ECMAScript object.

It is recommended to create a Field object only when the HTML form field is used or
required; creating and maintaining the array of all fields as appropriate. Fields are
identified by name as required by ISO 32000-2, 12.7.4.2 "Field Names".

EXAMPLE The following _init function is invoked when the HTML file is loaded by calling:

 document.addEventListener("DOMContentLoaded", _init);

function _init() {

 var elems = document.getElementsByTagName("input");

 for (var i = 0; i < elems.length; i++) {

 e.addEventListener("focus", field_event);

 e.addEventListener("change", field_event);

 e.addEventListener("click", field_event);

PDF Association

© 2019 PDF Association 47

 //only push when elems[i] doesn’t exist in the all_fields array

all_fields.push(elems[i]);

 }

 // the same for "select", "textarea"

 do_calculations();

}

function field_event(e) {

//checks the array of all fields if the field with the name exists.
returns existing or creates new one

 var f = init_field(i.e., target.name);

 . . .

 // keypress - focused text edit

 if (e.type == "keypress") {

 var keyCode = 0;

 if (e.keyCode != undefined && e.keyCode >= 20)

 keyCode = e.keyCode;

else if (e.charCode != undefined && e.charCode >= 20)

 keyCode = e.charCode;

 if (keyCode != 0)

 event.change = String.fromCharCode(keyCode);

 event.selStart = e.target.selectionStart;

 event.selEnd = e.target.selectionEnd;

 }

. . .

// similarly, for "change" "click" etc.

 . . .

//process the event on the field, check results do calculations return
status

…

 return result;

}

// make sure the implementation is consistent and accessed fields
through ECMA Script follow the same pattern

this.getField = function (name) {

 return init_field(name);

PDF Association

© 2019 PDF Association 48

};

One ECMAScript Field object may reference more widget annotations; the same
functionality shall be preserved in derivation to HTML:

 When ECMAScript changes a value, all HTML form fields with the same name shall
change their value.

 When one HTML form field is changed, the corresponding Field object is changed
together with all related HTML form fields.

The processor shall include all document level ECMAScript methods as defined by the
JavaScript entry in the Names entry in the document catalog dictionary and ECMAScript
page level events defined by the AA entry in page dictionary.

When deriving the widget annotation, the processor shall expand the JavaScript library
with methods that are defined for each form field in the form field’s additional-actions
dictionary. See ISO 32000-2, Table 199: Entries in a form field’s additional-actions
dictionary.

NOTE 1 It is best practice to generate function names for each field’s method based on field
identifier, which makes managing the invocation of functions as easy as possible.

Processors should keep all calculated fields in a separate array to have the do_calculation
method optimized.

NOTE 2 HTML form fields always shows formatted value, while real value is preserved in
the Field object.

Bibliography
RFC 1738, Uniform Resource Locators (URL) (December, 1994) Internet Engineering Task
Force (IETF)

Tagged PDF Best Practice Guide 1.0, PDF Association

NOTE: Publication of this document is expected in Q2 of 2019

Matterhorn Protocol 1.02 (April, 2014), PDF Association

	Foreword
	Introduction
	References
	1 Scope
	2 Terms and definitions
	3 Notation
	4 Algorithm for deriving HTML from Tagged PDF
	4.1 Technical context
	4.2 Document handling
	4.2.1 Head
	4.2.2 The structure tree root
	4.2.3 The ClassMap
	4.2.4 Body

	4.3 PDF structure elements
	4.3.1 General
	4.3.2 Common processing
	4.3.2.1 Processing PDF structure elements
	4.3.2.2 When the PDF structure element does not use an explicit namespace
	4.3.2.3 When the PDF structure element uses an explicit namespace

	4.3.3 Mapping PDF structure element types to HTML elements
	4.3.4 Ensuring valid HTML
	4.3.5 Special cases
	4.3.5.1 H, H1..Hn
	4.3.5.2 Caption
	4.3.5.2.1 Captions of Figures and Formulas
	4.3.5.2.2 Captions of Tables

	4.3.5.3 Lbl
	4.3.5.3.1 Lbl within a LI (list item)
	4.3.5.3.2 Lbl within a Form

	4.3.5.4 Figure, Formula
	4.3.5.5 L (list)
	4.3.5.5.1 L within L
	4.3.5.5.2 L as description list
	4.3.5.5.3 L within P or Sub

	4.3.5.6 TH
	4.3.5.7 NonStruct, Private and Artifact
	4.3.5.8 Links and references
	4.3.5.9 Forms
	4.3.5.9.1 Form field processing for PDF 1.7 structure elements
	4.3.5.9.2 Form field processing for PDF 2.0 structure elements
	4.3.5.9.3 Form field processing for PDF structure elements from the HTML

	4.3.6 Structure element properties
	4.3.6.1 General
	4.3.6.2 Lang
	4.3.6.3 Replacement text
	4.3.6.4 Alternate description
	4.3.6.5 Expansion text

	4.3.7 Attributes
	4.3.7.1 General
	4.3.7.2 Deriving structure attributes to HTML attributes
	4.3.7.3 Deriving structure attributes to CSS properties
	4.3.7.4 List standard structure attribute owner
	4.3.7.5 Table standard structure attribute owner
	4.3.7.6 Layout standard structure attribute owner
	4.3.7.7 HTML
	4.3.7.8 CSS
	4.3.7.9 ARIA roles
	4.3.7.10 Others

	4.4 Processing of a content element
	4.4.1 Paths
	4.4.2 Text
	4.4.3 Image XObjects and inline images
	4.4.4 Form XObjects
	4.4.5 Shadings
	4.4.6 Artifacts
	4.4.7 Handling marked content sequences
	4.4.7.1 Lang attribute in a marked content sequence
	4.4.7.2 ActualText attribute in a marked content sequence
	4.4.7.3 Alt attribute in a marked content sequence
	4.4.7.4 E attribute in a marked content sequence
	4.4.7.5 Multiple attributes in a marked content sequence

	4.4.8 Processing of an object reference (OBJR)
	4.4.8.1 XObjects
	4.4.8.2 Annotations (other than of type Link and Widget)
	4.4.8.3 Widget annotations
	4.4.8.3.1 Mapping widget annotations to HTML
	4.4.8.3.2 Widget annotation attributes

	4.5 ECMAScript
	4.6 Associated file processing
	4.6.1 General
	4.6.2 URL References
	4.6.3 Media types
	4.6.4 Handling media types
	4.6.4.1 General
	4.6.4.2 HTML
	4.6.4.3 CSS
	4.6.4.4 JavaScript
	4.6.4.5 Images
	4.6.4.6 SVG
	4.6.4.7 MathML

	Untitled
	Annex A: Security implications
	Annex B: ECMAscript derivation guidance
	Bibliography

