
High-Security PDF
Redactions

Closing known routes for leakage in redacted documents

History of document redaction
▪ Early use of redact meant to organize or edit.
▪ Its usage as we understand it today is relatively new.
▪ From the Oxford English Dictionary:
▪ c. transitive. To censor (a document) by removing or blacking out certain words

or passages prior to publication or release, esp. for legal, security, or
confidentiality purposes; to remove or black out (words or information) in this
way. Frequently in passive. Now the most common sense.

▪ 1958 – N.Y. Suppl. 2nd Ser. 168 422 (note) [We] agree that feasible means
should have been adopted to redact DeGennaro’s confession and admissions so
as to restrict their contents to his own inculpations, and thus have avoided any
possible prejudice to Lombard.

History of document redaction
▪ 1973 – One of the first recorded discussions to remove names from a testimony

with blacked out names was discussed in a U.S. Court of Appeals case.

▪ 1988 – One of the first highly public use of redaction was Oliver North’s notebooks
during the Iran-Contra hearings.

▪ 1993 – Adobe introduces PDF.
▪ 2006 – Adobe published a technical note providing guidance on PDF redaction

which involved black rectangles to cover regions, saving pages as images,
and reassembling images into PDF pages.

▪ 2006 – PDF redaction annotation introduced as an addendum to version 1.7.
▪ 2019 – Fast forward to recent times and we have one of the most public uses of

redaction and PDF with the Mueller report.

Many options for PDF redaction

▪ 2009 – HSBC Exposed Sensitive Bankruptcy Data.
▪ 2009 – Associated Press was able to read redacted court testimony that showed Facebook’s estimate of its own market

value. The AP got its scoop by cutting and pasting the blacked-out sections of a court transcript.
▪ 2009 – TSA used black rectangles to cover text in a publicly available PDF that described screening methods designed

to thwart terrorists.
▪ 2011 – British Ministry of Defense, published a PDF document online, unintentionally revealing information about

nuclear submarine security. Added black background to “removed text sections”.
▪ 2011 – A California federal district judge filed an opinion in a patent infringement suit by Apple against Samsung

Electronics. Discussion of studies by Apple and details on Apple’s licensing deals were supposedly redacted.
▪ 2014 – As part of its latest reporting on leaked NSA documents regarding Snowden, the New York Times did not

properly redact a PDF that listed the name of a National Security Agency employee who prepared the document as well
as a target of the program.

▪ 2018 – Improperly redacted PDF legal documents show Facebook considered selling deep access to data to other
corporations.

▪ 2019 – Paul Manafort’s lawyers submitted a PDF that had black boxes drawn over the text to be redacted but without
deleting the actual text underneath it.

History of Failures

2018 Facebook example still available!

https://www.documentcloud.org/documents/5317193-7b6c2e96-396f-4cf6-
ba18-65c8f848383d.html

Nonetheless, Plaintiff has found in the files of these low-
level employees clear evidence that beginning at least
by 2012 and likely earlier, Facebook engaged in a
scheme to trade access to data in its operating system
on advantageous terms in order to extract large
payments from collusive partners who sought to stifle
competition in the various software markets in which
they operated. Plaintiff has found direct evidence of
agreements in which large companies agreed to spend
substantial sums of money on advertising with
Facebook in…

The difficulties

▪ Human error with use of software.

▪ Software error due to bugs.

▪ Easy for information to hide. PDF is a complex format.

▪ We don’t know what we don’t know.

▪ On 25 May 2018, the European Union’s General Data Protection Regulation
(GDPR) became law.

▪ The regulation affects all member states of the EU and obliges them to be
more accountable, transparent and responsible for the data they hold,
process and share.

▪ Fines: Maxing at 20 million Euros or 4% of worldwide revenue from the
preceding year, whichever is higher.

Cost of failures can now be significant

Many options for PDF redaction
▪ How do you know the redaction solution works?

▪ Do you know what the code is doing?

PDF redaction annotation

The redaction annotation involves two steps.

1) The region to be redacted is identified with a black rectangle.

Once the regions have been verified as being those of interest, the application
must remove the information beneath the rectangle.

2) A “sanitize” step is used to remove meta-data.

Obvious failures

▪ Text contained underneath a solid rectangle.

▪ Most common failure of the past.

▪ If you do this today with Acrobat Pro you get message.

Less obvious failures
▪ Invisible text can be present

With no white text or
transparent text present in
file, page retains vector
text.

Less obvious failures
▪ Invisible text can be present

With white text, or transparent text
present in file, redacted document is
converted to image, if you select to
sanitize and remove hidden
information.

If you choose not to sanitize and
remove hidden information, then that
content is retained.

Even less obvious failures
▪ Subset fonts can retain information

Even less obvious failures
▪ Subset fonts can retain information

Even less obvious failures

15 0 obj

<</Length 759>>

stream

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo

<< /Registry (Adobe)

/Ordering (UCS) /Supplement 0 >> def

/CMapName /Adobe-Identity-UCS def

/CMapType 2 def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

Close look at Unicode CMap in the redacted file.
31 beginbfchar

<0003> <0020>

<0102> <0061>

<010F> <0062>

<0110> <0063>

<011A> <0064>

<011E> <0065>

<0057> <0050>

<0064> <0054>

<015A> <0068>

<015D> <0069>

<0175> <006D>

<0176> <006E>

<017D> <006F>

<018C> <0072>
<0190> <0073>
<0357> <003A>
<0358> <002E>
<0439> <0025>
<019A> <0074>
<019F> <FFFD>
<01B5> <0075>
<037E> <0028>
<037F> <0029>
<01C0> <0076>
<01C1> <0077>
<039B> <0040>
<03A8> <0024>
<03EF> <0033>
<03F0> <0034>
<03F2> <0036>
<03F5> <0039>
endbfchar

Even less obvious failures

15 0 obj

<</Length 759>>

stream

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo

<< /Registry (Adobe)

/Ordering (UCS) /Supplement 0 >> def

/CMapName /Adobe-Identity-UCS def

/CMapType 2 def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

Close look at Unicode CMap in the redacted file.
31 beginbfchar

<0003> <0020> Space

<0102> <0061> a

<010F> <0062> b

<0110> <0063> c

<011A> <0064> d

<011E> <0065> e

<0057> <0050> P

<0064> <0054> T

<015A> <0068> h

<015D> <0069> i

<0175> <006D> m

<0176> <006E> n

<017D> <006F> o

<018C> <0072> r
<0190> <0073> s
<0357> <003A> :
<0358> <002E> .
<0439> <0025> %
<019A> <0074> t
<019F> <FFFD>
<01B5> <0075> u
<037E> <0028> (
<037F> <0029>)
<01C0> <0076> v
<01C1> <0077> w
<039B> <0040> @
<03A8> <0024> $
<03EF> <0033> 3
<03F0> <0034> 4
<03F2> <0036> 6
<03F5> <0039> 9
endbfchar

Even less obvious failures

15 0 obj

<</Length 759>>

stream

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo

<< /Registry (Adobe)

/Ordering (UCS) /Supplement 0 >> def

/CMapName /Adobe-Identity-UCS def

/CMapType 2 def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

Red characters retained in CMap but do not appear in document.
31 beginbfchar

<0003> <0020> Space

<0102> <0061> a

<010F> <0062> b

<0110> <0063> c

<011A> <0064> d

<011E> <0065> e

<0057> <0050> P

<0064> <0054> T

<015A> <0068> h

<015D ><0069> i

<0175> <006D> m

<0176> <006E> n

<017D> <006F> o

<018C> <0072> r
<0190> <0073> s
<0357> <003A> :
<0358> <002E> .
<0439> <0025> %
<019A> <0074> t
<019F> <FFFD>
<01B5> <0075> u
<037E> <0028> (
<037F> <0029>)
<01C0> <0076> v
<01C1> <0077> w
<039B> <0040> @
<03A8> <0024> $
<03EF> <0033> 3
<03F0> <0034> 4
<03F2> <0036> 6
<03F5> <0039> 9
endbfchar

Even less obvious failures

16 0 obj

<</Length 826>>

stream

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CMapType 2 def

/CMapName/R16 def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

Situation is worse when application writes out CMap in order that characters appear.
31 beginbfchar

<0003> <0003> <0020>

<0057> <0057> <0050>

<0064> <0064> <0054>

<0102> <0102> <0061>

<010f> <010f> <0062>

<0110> <0110> <0063>

<011a> <011a> <0064>

<011e> <011e> <0065>

<015a> <015a> <0068>

<0175> <0175> <006d>

<0176> <0176> <006e>

<017d><017d> <006f>

<018c><018c> <0072>

<0190> <0190> <0073>
<019a> <019a> <0074>
<019f> <019f> <fffd>
<01b5> <01b5> <0075>
<01c0> <01c0> <0076>
<01c1> <01c1> <0077>
<0357> <0357> <003a>
<0358> <0358> <002e>
<037e> <037e> <0028>
<037f> <037f> <0029>
<039b> <039b> <0040>
<03a8> <03a8> <0024>
<03ef> <03ef> <0033>
<03f0> <03f0> <0034>
<03f2> <03f2> <0036>
<03f5> <03f5> <0039>
<0439> <0439> <0025>
endbfchar
endcmap

Even less obvious failures

16 0 obj

<</Length 826>>

stream

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CMapType 2 def

/CMapName/R16 def

1 begincodespacerange

<0000> <FFFF>

endcodespacerange

In some cases, the exact order could occur depending upon the content and the application.

31 beginbfchar

<0003> <0003> <0020>
Space

<0057> <0057> <0050> P

<0064> <0064> <0054> T

<0102> <0102> <0061> a

<010f> <010f> <0062>b

<0110> <0110> <0063> c

<011a> <011a> <0064> d

<011e> <011e> <0065> e

<015a> <015a> <0068> h

<0175> <0175> <006d> m

<0176> <0176> <006e> n

<017d> <017d> <006f> o

<018c> <018c> <0072> r

<0190> <0190> <0073> s
<019a> <019a> <0074> t
<019f> <019f> <fffd>
<01b5> <01b5> <0075> u
<01c0> <01c0> <0076> v
<01c1> <01c1> <0077> w
<0357> <0357> <003a> :
<0358> <0358> <002e> .
<037e> <037e> <0028> (
<037f> <037f> <0029>)
<039b> <039b> <0040> @
<03a8> <03a8> <0024> $
<03ef> <03ef> <0033> 3
<03f0> <03f0> <0034> 4
<03f2> <03f2> <0036> 6
<03f5> <03f5> <0039> 9
<0439> <0439> <0025> %
endbfchar
endcmap

More font issues
▪ Previous problem was demonstrated by an Australian government study

and the issue still exists today.

▪ Poking around quickly revealed additional issues.

▪ With Type 3 fonts, each character is defined by a content stream. The
stream can contain path, text or image objects. The dictionary for each
character is referenced in the CharProcs entry of the Type 3 font
dictionary.

More font issues
55 0 obj
<</CharProcs 52 0 R /Encoding 53 0 R /FirstChar 0 /FontBBox[-1 -89 98 20] /FontMatrix[1 0 0 1 0 0] /LastChar 30
/Name/T1/Resources 54 0 R/Subtype/Type3/Type/Font
/Widths[58.4 0 63 27.5 46.9 63 57.5 40.2 63 63.2 59.8 66.8 54.2 50.8 63 95.9 30.2 63
41.9 62 85.8 32.2 107 60.8 60.8 60.8 60.8 60.8 36.4 85.8 36.4]>>
endobj

52 0 obj
<</a0 17 0 R /a1 18 0 R /a10 19 0 R /a11 20 0 R /a12 21 0 R /a13 22 0 R /a14 23 0 R /a15 24 0 R /a16 25 0 R
/a17 26 0 R /a18 27 0 R /a19 28 0 R /a2 29 0 R /a20 30 0 R /a21 31 0 R /a22 32 0 R /a23 33 0 R /a24 34 0 R
/a25 35 0 R /a26 36 0 R /a27 37 0 R /a28 38 0 R /a29 39 0 R /a3 40 0 R /a4 41 0 R /a5 42 0 R /a6 43 0 R
/a7 44 0 R /a8 45 0 R /a9 46 0 R>>
endobj

More font issues

▪ After redaction, I extracted the CharProcs streams and rendered them….

Malicious information hiding
▪ Unlikely, but it is possible that information may be contained in ICC

profiles (which can have private tags with information).

▪ Some PDF creators also place additional data in PDF objects.

Situation

▪ Existing solutions take a PDF file and “cut it down.”

▪ Risks of data ‘leaking’ through in hidden ways.

▪ People resort to printing the document, redacting with marker, and
scanning.

▪ Upside: No information other than what is visible in the redacted
document when it was scanned.

▪ Downside: Labor intensive, wasteful of paper, and subject to degrading
quality.

Our approach
▪ Our solution, dubbed “High Security Redactions”, is essentially a digital method of the

same thing.
▪ We build a new PDF file from a blank slate.
▪ User performs markups on the document using redaction annotations.
▪ When the document is saved, we render each page to a bitmap, and wrap bitmaps into

a new PDF file.
▪ OCR is performed on the bitmaps and invisible text is overlaid.
▪ The steps that the user performs are the same using Adobe’s method, or ours.
▪ Our step can be used to generate a ‘high security’ version from a file that has already

been redacted by Adobe’s method ensuring that information leaked from fonts does
not occur.

Trade-offs
▪ Vector scalability loss.

▪ Likely larger file.

▪ But ensured full redaction with maintained searchability.

▪ No information hidden in image data, ICC profiles, fonts, or other
private structures.

Open-source High Security Redaction

▪ MuPDF and Ghostscript are open-source projects that include the ability
to render, manipulate, and convert PDF files.

▪ They have a dual commercial/AGPL license model.

▪ Both applications support the integration of OCR solutions. Currently the
open-source Tesseract OCR solution is integrated.

▪ Both applications support the creation of “High Security” redaction.

▪ MuPDF, which is essentially a PDF toolkit with an API across multiple
languages, can be used to apply redaction annotations.

Open-source High Security Redaction

Open-source High Security Redaction

Open-source High Security Redaction

Open-source High Security Redaction

Open-source High Security Redaction

Using the mupdf command line tools:

mutool draw -o output.pdf -F ocr.pdf -c rgb -r 300 in.pdf

will produce a high-security redacted PDF with 300dpi full color
renderings of the page.

To use ghostscript:

gs -o output.pdf -sDEVICE=pdfocr24 -r300 in.pdf

will do the same.

30 years of technology innovation

1990
• 1988 Ghostscript development began
• 1990 first release of Ghostscript PS interpreter
• 1993 Artifex released first PDF interpreter before everyone except Adobe
• 1996 Artifex released first PCLXL interpreter before anyone but HP
• 1998 Artifex released PCL6 (PCL5/PCLXL) interpreter

2000
• 2000 Artifex released PostScript 3 interpreter
• 2002 Artifex released first PDF 1.4 transparency interpreter before anyone but Adobe
• 2002 Kyocera released first native PDF printer using GhostPDF (now over 20 products and millions of units sold)
• 2003 MuPDF development began
• 2006 Artifex released PDF 1.7 interpreter
• 2008 Artifex released XPS interpreter

2010

• 2010 Artifex released new color-handling
• 2012 MuPDF 1.0 was released
• 2013 MuPDF added JavaScript and all interactive features
• 2014 Artifex acquired SmartOffice with MS Office compatibility
• 2014 Adobe licensed MuPDF for Adobe Digital Publishing Suite Android mobile
• 2015 Google licensed Ghostscript as cloud solution
• 2018 Cobalt Acceleration Library development began
• 2019 MuPDF adds WASM build targets
• 2020 MuPDF adds Python bindings
• 2020 Artifex engineers develop ”High Security Redactions”

About Artifex

Artifex is committed to providing quality software solutions.

▪ Roots in open-source with Ghostscript and MuPDF

▪ Partners with over 150 OEM leaders such as Adobe,
Google, Blackberry, Garmin, Dropbox

▪ Talented engineering staff in U.S., Europe, and Asia

▪ Over 100 consecutive quarters of profitability

▪ Deeply committed to product quality and service

▪ Dedicated to providing prompt and professional
technical support and consulting services to our
customers

▪ Flexible licensing arrangements based on individual use
case

Global Service & Support

The Artifex Advantage

▪ We build long-term relationships based on strong technical knowledge, outstanding service and a
willingness to invest in our partner relationships.

▪ Over 150 OEM partners representing some of the biggest names in technology depend on Artifex
software solutions.

Ghostscript

Ghostscript has the most comprehensive
conversion capabilities and flexibility of
any software in its class.
▪ PDF 1.2 → 2.0
▪ Mopria, AirPrint
▪ PostScript Level 1 → 3
▪ PCL5e, PCL5c, PCLXL 3.0
▪ HP-GL, HP-GL/2, HP RTL
▪ XPS
▪ Tested using Quality Logic FTS, ATS, CET suites

as well as proprietary, customer and user files

The #1 PDL Conversion
Tool Available Today

Ghostscript

The modular graphics library with its
proprietary color management system and
advanced screening technology make
Ghostscript a flexible and robust solution.
▪ Comprehensive font solution
▪ Fully compatible interpreters
▪ Multi-platform support (Unix, Linux, MS

Windows, macOS X, VxWorks)
▪ Graphic object dependent color

management technology
▪ High-performance, lightweight solution

(3MB)
▪ Vast range of customizable features

30 Years of Technology Evolution

MuPDF

A highly versatile, customizable PDF and XPS
interpreter, viewer or toolkit solution.
▪ Integrates with a wide variety of

embedded, host-based, mobile or cloud
applications

▪ High-fidelity, accurate PDF rendering
▪ Interactive PDF features (annotations,

form filling, etc.)
▪ Small footprint (2MB)
▪ Multi-platform support (Android, iOS, Win,

macOS, Linux, Unix)

Ultra-Small, Ultra-Fast
PDF Rendering Solution

SmartOffice

View, edit, create, print, present and share Microsoft
Office and PDF documents via your mobile device.
▪ SmartOffice handles all major document formats on

mobile or embedded devices:
▪ MS Word, Excel, PowerPoint, PDF, image files

(.jpg, .png, .gif), text files (.txt), HWP
▪ iOS, Android, Windows, macOS platforms

▪ Convert MS docs to PDF
▪ Interactive PDF features
▪ Securely integrates into your enterprise document

workflow
▪ Small download size ensures fast loading and high-

quality performance

Made for Mobile
Document Productivity

