
Serverless eStatements

Millions of PDFs once a month

The Problem

• Docx to PDF conversion is CPU intensive
– Depends on “complexity” (number of pages, tables, page breaks etc)

• so producing lots has meant provisioning servers

• and that’s expensive: hardware, software and people

2

time

C
P

U
s

The Solution: “serverless”

3

time

C
P

U
s

Serverless: its the next step in the evolution of computing

4

Serverless: Focus on functions implementing your business logic

5

C
O
S
T

Focus on business logic

Adapted from source: Deloitte Consulting LLP

All the big providers now offer it

Walled Gardens:

• AWS Lambda

• Azure Functions

• Google Cloud Functions

• IBM, Oracle…

Cross platform

• Serverless Framework

6

Serverless deployment of
Docker containers:

• OpenWhisk (deploy
anywhere)

• For Kubernetes:
– Deploy a Docker Container:

– in Knative

• OpenWhisk

• OpenFaaS

Concepts as implemented in AWS Lambda

• Common concepts:

– Trigger events

– Scheduler executes
Function

• Languages

– Javascript (node.js)

– Others, depending on
platform

• Function packaging

• Lamba event triggers
include:

– Your REST API

– S3

– SQS (messages)

– Step functions

– etc.

7

200,000 PDFs in 10 mins with Native Documents on AWS Lambda

8

ms

591 function instances started

8 seconds to
launch an instanceAverage 1 sec

per conversion

Compared to earlier paradigms

Problems overcome:

• Slow start time if a server instance needs to start

• Effort to configure server auto-scaling

9

Better Faster

Cheaper
AWS Lambda cost
for those
200,000 PDFs:
175,000 seconds
= ~$5

How? You need “serverless-ready” PDF Conversion code

• Needs to be able to run on the platform:

– Lowest common denominator is node.js

• Ours, for example works as follows

– C/C++ code base

• Proprietary doc/docx layout/editing engine

• Exports PDF using Skia (Google 2D graphics lib) PDF backend

– Converted to Web Assembly (wasm) using Emscripten

• https://www.npmjs.com/package/@nativedocuments/docx-wasm

10

https://www.npmjs.com/package/@nativedocuments/docx-wasm

Web Assembly is also a great foundation for editing Word docs

• Docx page layout
– Must be done (accurately!) to generate a PDF

– Done by Native Documents rendering engine

– Rendering engine also used in Word File Editor

• Thanks to wasm, we run that rendering code in the browser

• Compared to Word Online (and Google Docs):

– wasm approach uses under half the resources

– User perceives better performance on long documents

• For example, the RTF spec:

11

Scroll to the end:-

Scroll to the end:-

compare Native Documents:-

In Word Online:-

Case study: High volume serverless ZUGFeRD PDF invoices

12

XML
invoice

message

1

2

3

4

4 functions to be orchestrated here

Invoice
template

Invoice
instance

PDF
invoice

ZUGFeRD
PDF

• Generally eInvoices are required in government procurement

– Low volume for most sellers

– Except intermediary hubs/services (billing service providers)

• (Compare eStatements)

• Increasingly corporate customers demand an eInvoice

– Facilitates reconciliation/analysis of electricity bills

• Easy then for utilities to provide consumers with an eInvoice

– Consumed by:

• Personal finance software

• Online banking

• Government tax authority

– A FinTech opportunity? Maybe..

13

But is eInvoicing really high-volume?

How best to wire micro-services together?

14

One state machine per
document processed

Case study 2: doc gen in Salesforce.com

15

Serverless
architecture
scales from 0 to
N documents.

Compare the
previous
architecture,
which required
up to 20 servers
to execute full
doc gen batches.

Lessons learnt

• Faster can sometimes be cheaper

• Web assembly:
– Production-ready

– Great if you have C/C++ code

– Great fit for serverless

• Concern that cloud APIs and sensitive documents don’t mix
– Serverless makes DIY easy

• Choose serverless-ready tech

• Choose serverless-ready business models
– Per-core/socket/CPU pricing doesn’t fit

• Where is your bottleneck now?

• Be aware of cloud vendor lock-in

16

17

jason.harrop@nativedocuments.com

