

Blockchain for documents- the

future of security

By Ross Frank

© 2015, iText Group NV, iText Software Corp., iText Software BVBA

What is Blockchain

© 2015, iText Group NV, iText Software Corp., iText Software BVBA

Traditional database

\equiv Stored in a structured way

Tables (relational database)

Data tables	ID	First Name	Last Name	Email	Year of Birth
	1	Peter	Lee	plee@university.edu	1992
	2	Jonathan	Edwards	jedwards@university.edu	1994
	3	Marilyn	Johnson	mjohnson@university.edu	1993
	6	Joe	Kim	jkim@university.edu	1992
	12	Haley	Martinez	hmartinez@university.edu	1993
	14	John	Mfume	jmfume@university.edu	1991
	15	David	Letty	dletty@university.edu	1995

Table: Students

Eliminate redundancy by linking data through ID = relations

Tutor	Student	Course
14	1	Algebra
1	12	Algebra
12	2	Algebra
2	15	Algebra
14	3	Statistics
3	15	Statistics
Table: tutors	nip	

Problems

- \equiv Stored in one place
 - \equiv Fail-over mechanisms are copies of the database
 - \equiv Any copies must sync back to a master copy
 - Copies cannot easily accept new entries
 - Must sync updates back to master ASAP
- \equiv Data integrity
 - Hard to keep track of all changes
 - Entries can change without warning
 - unless specifically programmed to retain history
 - but that history can then again be edited etc

Problems

Concurrent modifications

- \equiv Race condition
 - Multiple users changing the same value
- ≡ Edit wars

Definition

≡ Wikipedia !

- A blockchain is a distributed database that maintains a continuously growing list of records, called blocks, secured from tampering and revision.
- \equiv A block is a collection of transactions that are added to the chain

Data security

- \equiv Users can have copy of the database
 - For integrity checks & fail-over security
 - Majority of user decides which data is authoritative

Definition

- Implementation details
 - **Each block contains a timestamp** and a **link** to a previous block.
 - - Use of cryptographic concepts
 - Hashing & digital signatures
 - **By** design, blockchains are inherently resistant to modification of the data
 - The main intention is to always store any modification in a new record
 - no overwriting or erasing
 - once recorded, the data in a block cannot be altered retroactively

Why?

\equiv Integrity

• "The document has this exact content."

Authentication

- "I created this document. And I can prove it."
- Non-repudiation
 - "He created this document. And I can prove it."

8

- "Hey, I've created this hash on 10 Oct 2016: here is the transaction in the blockchain which contains the hash. I've created it according to this formula from this file."
 - Integrity
 - Authentication
 - Non-repudiation
 - Timestamp

Basic concept

Hashing

- Turns an arbitrary block of data into a fixed-size bit string.
- Used for verification of data integrity.
 - Any small change to input has huge effect on hash value.
- Non-reversible (one way).

Encryption

■ Using two separate but compatible keys to encrypt information.

Encrypt data

≡ Sign data

12

■ Can be decrypted => two-way.

Blockchains

Relation to pdf

■ Pdf documents can be digitally signed.

- Requires Certificate Authority (centralized).
- Requires timeserver (centralized).
- Can not be signed in parallel.
- Signatures live in the document.

Opportunities

≡ Data in a blockchain

- Can be signed using known infrastructure.
- Is automatically validated and timestamped.
- Can be viewed by everyone.
- Can live separately from the physical (real world) data it references.

Our idea - high level

Our idea - detail level

■ Store meta-information of the pdf document on a blockchain:

- ID,
- hash (+ algorithm),
- signature (+ algorithm),
- fields that can be chosen by the end-user.
 - E.g. "currently awaiting feedback", "asset has been checked by customs USA", etc.

© 2015, iText Group NV, iText Software Corp., iText Software BVBA

In cryptography, a web of trust is a concept to establish the authenticity of the binding between a public key and its owner.

Source: Wikipedia

- Bob can look up the public key of Alice
 - assuming public keys are truly publicly available,
 - or Alice can simply give Bob her public key.
- Bob signs the public key of Alice with his private key.
- Other users can see all these records.
 - They can verify (using Bob's public key) that Bob has signed Alice's key.
 - This is considered as "Bob trusts Alice".

- This builds a graph where some nodes are connected by a "X trusts Y" relationship.
- The application built on top of this framework can then decide how to handle trusted vs. untrusted users.

≡ Example

\equiv Extensions are possible.

- Add a status field "ACK" or "NACK".
 - Now Bob can revoke his trust in Alice.
 - Only the most recent record is taken into account.
- \equiv Allows temporary trust (interim workers).

Use case(s)

© 2015, iText Group NV, iText Software Corp., iText Software BVBA

Blockchain for documents

Documer Timestan	nt ID: [<abcdef>, <abcdef>] np</abcdef></abcdef>	
Signed	Document hash 🥢	
Certificate Identity Public keep 	of signer	
	Compressed property list	

25

Records are distributed

1st attempt to offer a forged painting with a fake certificate fails because the certificate can't be found on the chain.

29

Use case 2: Supply chain

Supply chain

Use case 3: Long-Term Validation

Renewing a signature

 $T \equiv \times T$

Summarized

One public blockchain is needed

- **Strength** is in the numbers
- Separate chains: workflow can't be tracked
- All data in the blockchain is public
 - This doesn't mean all data needs to be public

