

Tagged PDF Best Practice Guide: Syntax
For developers implementing ISO 14289-1 (PDF/UA)

Version 1.0.1 (January 2023)

Copyright © 2023 PDF Association

This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

PDF Association
Neue Kantstrasse 14

14057 Berlin, Germany

Tel: +49 (0)30 39 40 50-0
Fax: +49 (0)30 39 40 50-99

E-mail: copyright@pdfa.org
Web: www.pdfa.org

Published in Germany and the United States of America

http://creativecommons.org/licenses/by/4.0/
mailto:copyright@pdfa.org
http://www.pdfa.org/

© 2023 PDF Association 2

Tagged PDF Best Practice Guide: Syntax
Table of Contents

1 Background .. 4

1.1 Use of the term “tagged PDF” .. 4

1.2 Document history ... 4

2 Introduction ... 5

2.1 About PDF/UA (Universal Accessibility) ... 5

2.2 Accessibility vs. reuse ... 5

2.3 What this Guide is not .. 5

2.4 Syntax guidance vs. tagging guidance .. 5

2.5 Looking towards PDF 2.0 and PDF/UA-2 ... 5

2.6 Use of normative language .. 6

2.7 Notation .. 6

3 General provisions ... 7

3.1 Scope .. 7

3.2 Fundamentals .. 7

3.3 Document level attributes ... 8

3.4 Content that spans pages .. 9

3.5 Empty structure elements ... 9

3.6 Role maps ... 9

3.7 Artifacts ... 10

4 Guidance for the standard structure types ... 11

4.1 Grouping elements ... 11

4.2 Block level structure element types .. 21

4.3 Illustration elements .. 47

5 Attributes and properties .. 54

5.1 Layout attributes .. 54

5.2 List attributes ... 58

5.3 PrintField attributes ... 59

5.4 Table attributes .. 59

© 2023 PDF Association 3

5.5 Commonly-used properties of content ... 60

6 Text characteristics.. 66

6.1 Superscripts and subscripts .. 66

6.2 Symbolic characters ... 66

7 Other features of PDF .. 66

7.1 Digital signatures ... 66

7.2 Page open options ... 67

8 Editing tagged PDF files ... 67

Annex A: The PDF/UA flag... 68

Annex B: PDF 2.0 ... 69

A.1 Differences between PDF 1.7 and PDF 2.0 ... 69

A.2 Namespaces and standard structure types .. 69

A.3 Investing in PDF 2.0 while supporting PDF 1.7 .. 69

Bibliography ... 71

© 2023 PDF Association 4

1 Background
This Best Practice Guide is intended to help developers understand the syntactical characteristics
of tagged PDF files required for an accessible experience. Other Best Practice Guides will address
other aspects of accessible PDF content.

1.1 Use of the term “tagged PDF”
“Tagged PDF” is the title of 14.8, the clause defining PDF’s accessibility mechanism in ISO 32000-1.
This term may be somewhat confusing, as ISO 32000 uses the term “structure element” instead. A
“tagged” PDF is one which meets the requirements of clause 14.8 in ISO 32000, which includes
structure element types, structure attributes and word disambiguation.

This document uses the term “tagged PDF” to refer to PDF documents that include structures
enabling accessibility. It uses the more technically-correct term “structure element” to refer to the
<P>, <Figure> and other container objects that are known to most users as “tags”.

1.2 Document history

Version Date Change

1.0.1 2021-01-10 Minor changes

1.0 2019-06-07 Version 1.0 released

0.1 2015-12-22 Initial pre-release

© 2023 PDF Association 5

2 Introduction
This document is intended for developers implementing tagged PDF and PDF/UA. Others
(including authors with some technical knowledge of PDF’s accessibility mechanisms) may also
benefit from this document. For example, this Guide is intended to be useful for those performing
detailed accessibility testing on PDF documents claiming conformance with PDF/UA, or on PDF
documents claiming to be accessible according to some other specification.

2.1 About PDF/UA (Universal Accessibility)
Ensuring content is accessible to users with disabilities presents broad and complex challenges in
any technology. ISO 14289-1 (PDF/UA-1) specifies technical requirements for PDF 1.7 (ISO 32000-1)
-conforming files to ensure a high-quality and consistent reading experience when used by a
variety of PDF/UA-conforming processors and assistive technology.

2.2 Accessibility vs. reuse
Tagged PDF facilitates content reuse for many purposes; accessibility is one such purpose.
Although tagging for certain reuse purposes might differ from tagging for accessibility purposes, in
general, best practice for accessibility purposes is also best practice for typical reuse objectives.

The focus of this guide is the establishment of the best possible use of PDF 1.7 syntax for
accessibility in the form of guidance on translating common content organization and semantics
into structure elements.

2.3 What this Guide is not
This Guide does not provide step-by-step guidance for achieving PDF/UA conformance, nor does it
offer information specific to any particular software application. This Guide does not provide
information on syntax validation against PDF 1.7 and does not claim to provide complete coverage
of the use of structure elements.

Although this document may be useful to technically-inclined authors, it is not intended as a guide
for document authors seeking information on how to tag PDF files. It does not address WCAG 2.1
or Section 508, but it can be used to inform activities intended to achieve conformance with such
requirements.

2.4 Syntax guidance vs. tagging guidance
This Syntax guide does not address all issues of interest to developers, in particular, guidance on
selecting tags in various circumstances.

Typical creation software simply transfers the user’s selection of structuring element (however
chosen) to the corresponding output irrespective of actual semantic appropriateness. PDF/UA-
aware software might offer advice if an incorrect or questionable usage occurs.

Guidance in semantically-correct tagging will be addressed in other PDF Association publications.

2.5 Looking towards PDF 2.0 and PDF/UA-2
Although ISO 32000-2 (PDF 2.0) makes many changes to tagged PDF, the basic principles are
unchanged. See Annex B: PDF 2.0 for more information. PDF/UA-2 (ISO 14289-2) will be based

© 2023 PDF Association 6

upon PDF 2.0. It is generally consistent with PDF/UA-1, but there are important differences,
including newly-defined and revised structure elements and clarifications on nesting limitations.

2.6 Use of normative language
In ISO standards, these terms are considered “normative”, in that they have specific, defined
meanings:

◼ “shall” = required (to avoid confusion with the specifications, this term is not used in this
Guide)

◼ “should” = strongly recommended
◼ “may” = permitted

This Best Practice Guide cannot and does not substitute for PDF/UA-1 itself, and thus only uses ISO
normative terms when quoting ISO or other third-party specifications.

2.7 Notation
The following conventions are used throughout:

◼ In the document’s text, key names are given in boldface
◼ In example pseudo-code, standard structure element entries (e.g., for examples) are given

with angled-brackets (e.g., <Div>). The elements are not closed; instead, items contained
within structure elements are enclosed by “{ }”. Attributes are indicated using HTML
conventions, e.g. ‘<P lang=”en-us”>’, remarks or special characters are shown by [].

Example:

<Figure alt=”PDF icon”>

<Caption> {

<P> [remark or notice]

<P> {relevant content}

}

© 2023 PDF Association 7

3 General provisions

3.1 Scope
The guidelines in this clause are generally applicable to all content within a PDF/UA-1 document.

3.2 Fundamentals
The most fundamental requirement for conformance with PDF/UA-1 is introduced clause 7.1,
paragraph 2:

“Content shall be marked in the structure tree
with semantically appropriate tags in a logical reading order.”

This clause discusses the significance and application of PDF/UA’s requirement.

3.2.1 Semantic appropriateness

From time to time, this document will use the term “semantically appropriate” to indicate a
reference to ISO 14289-1, 7.1, paragraph 2.

Ensuring correct semantics for structure element types makes it possible for assistive technology
users to understand roles and relationships in the document. PDF/UA requires conforming
software to generate tagged PDF in which the tags fully represent the author’s semantic rather
than literal intent.

Examples demonstrating the requirements of PDF/UA-1, 7.1, paragraph 2 as applied to use cases:

◼ Heading content must be tagged with the correct structure element (<H1>–<H6>), to
provide an unambiguous relationship between the heading content and other content in
the document

◼ It is semantically inappropriate to include list bullets inside <LBody> structure elements;
semantic appropriateness requires that such content be tagged with <Lbl> structure
elements within the same as the pertaining <LBody> element.

◼ If Header and ID attributes are not provided, and do not adequately identify the header
relationship, each table header cell (<TH>) requires the Scope attribute.

◼ References for footnotes must be tagged to reflect all the appropriate semantics, e.g.
(<Reference><Lbl>1</Lbl></Reference>)

◼ Soft line-breaks (typically added by end users with Shift + Return) do not indicate creation of
a new BLSE.

Example:

Input in the application:

{Talking about [line break] titles}

PDF output:

<H2> {Talking about titles}

NOTE Line breaks are not a concept that can be expressed using PDF 1.7.

In terms of correct use of semantic structures in word-processing applications, it’s common for
authors to make mistakes, e.g.:

© 2023 PDF Association 8

◼ A table was used to format some content, but semantically, the content is simply a set of
paragraphs.

◼ Tabular information is not structured with table structure elements
◼ A heading is separated in two headings because the author added a line-break for layout

purposes

3.2.2 Reading order

A fundamental requirement for accessibility is the ability to unambiguously understand the logical
order and sequencing of text and other objects. In PDF, this information is often unavailable
because PDF files are traditionally created with print and display as the primary goal.

A logical reading-order established via a depth-first traversal of the structure tree is a critical
feature of accessible PDF files.1

3.2.3 Mapping text to Unicode

Text (page content, metadata, annotations) must be mapped to Unicode in order to be accessible
(see ISO 32000-1, 14.8.2.4.2, “Unicode mapping in Tagged PDF”).

In cases in which Unicode mappings are not available (e.g, a logo encoded as text), mapping to the
Unicode private use area (PUA) is the only solution that facilitates conformance to encoding
requirements in PDF/UA-1. However, this results in a loss of semantic information. In order to
retain such information, Alt or ActualText properties can be used (see 5.5, “Commonly-used
properties of content”).

3.3 Document level attributes
PDF/UA-1 regulates document level attributes as follows:

◼ The document level XMP metadata must include the PDF/UA “flag” (see Annex A).
◼ The document level XMP metadata must contain a Title (dc:title) (see PDF/UA-1, 8.11,

“Metadata”).
◼ The document’s View property must be set to display the Title (not the file name) (see

PDF/UA-1, 8.12.1 “Metadata”).

PDF/UA-1 does not explicitly require specification of a document’s language at the document level
(via the Lang entry in the Catalog dictionary), but simply requires that all content have a declared
language. Accordingly, instead of the Lang entry in the document’s catalog dictionary, the
document’s content could be enclosed in structure elements or marked content sequences that
have the correct Lang attribute. However, PDF/UA-1 implicitly requires a document-level language
in order to indicate applicable language for metadata and outline entries on the document level.
as otherwise the applicable language for the Title entry, or any other metadata fields or entries in
the outline entries (commonly referred to as bookmarks) would not be known.

1 Reading order is further addressed in the forthcoming Tagged PDF Best Practice Guide: Tagging.

© 2023 PDF Association 9

3.4 Content that spans pages
Logical structure is agnostic to pagination. Accordingly, content items that span two (or more)
pages must each be linked to the logical structure, in the right order, without restarting the
structure element.

Example: a paragraph starts at the bottom of page 4 and continues at the top of page 5. From a
logical structure perspective, this paragraph is a single content item, and is enclosed by a single
<P> structure element. However, from the page description level, the same paragraph is encoded
in two parts, each part a marked content sequence linked to the very same <P> structure element.

3.5 Empty structure elements
In PDF 1.7, structure elements may be “empty” in that they do not enclose content directly or
indirectly. However, it is semantically appropriate that an empty structure element only be
present if there is a semantic reason for its inclusion (e.g., an empty<TD> structure element within
a table to ensure correct table structure). In general, and to minimize the chances for confusion, it
is recommended that structure elements not be empty unless they serve a semantic role in a
defined substructure such as a <Table> or <L> (list).

It is important for consumer software to be able to represent empty structure elements to the user
(e.g. an empty cell in a table still needs to be conveyed for correct semantics and table
understanding).

Certain structure element types (e.g., <Figure> or <BlockQuote> elements) preclude (by nature of
their semantics) usage without content.

It is semantically acceptable for the following types to be empty:

Structure element type Example (non-exhaustive) use cases

TD Maintain table structure

LI Maintain list structure

Span ActualText for white-space characters; metadata properties;
attributes

Div Provide metadata properties and/or attributes

Document A single-page document with no content

NonStruct and Private Inclusion of arbitrary tagsets

Empty heading structure elements (H#, H) are discussed in 4.2.2, “<H1>—<H6> (headings)”.

It is semantically inappropriate for all other structure element types to be empty. However, empty
structure elements are a reality in real-world documents whether permitted by PDF/UA or not. The
ability to handle such cases is advised.

3.6 Role maps
Tagged PDF defines a set of standard structure types (see ISO 32000-1:2008, 14.8.4) to enable
interchange of document semantics, but PDF creators are not limited to this base set, and may

© 2023 PDF Association 10

extend it through the use of custom structure types. In such cases, RoleMap entries (see ISO
32000-1, Table 322) are required that map these custom structure types (e.g., “<DataTable>”) to
semantically-appropriate standard structure types (e.g., <Table>). Accordingly, it would be
incorrect to map <DataTable> to <H1>.

3.7 Artifacts
The process of laying out and paginating content for display can lead to the introduction of
additional display items (e.g. page numbers on each page or table borders). These items are not
part of what ISO 32000-1 defines as “real content”; they are considered artifacts of layout (see
14.8.2.2, “Real Content and Artifacts” in ISO 32000-1). A requirement for tagged PDF is to clearly
distinguish “real” content from artifacts. PDF/UA also makes it clear that artifacts must be
accessible, but it is less specific about precisely what is required for content marked as Artifact.

Artifact content must be accessible, therefore the basic rules of accessibility (see 3.2
“Fundamentals”) apply, including requirements for reading order and Unicode.

It is semantically inappropriate to contain semantic content within a marked content sequence
tagged as artifact.

3.7.1 Header and footer content

Page headers and footers are usually placed automatically as a function of pagination. As such this
content is not part of the reading-order of the document and is not considered to be “real content.

3.7.2 Page numbers

Page numbers must be marked as artifacts in marked-content sequences with a property list entry
Pagination (see ISO 32000-1, Table 330 – Property list entries for artifacts) property).

Accessible page enumeration is enabled through use of the Page Labels (ISO 32000-1, 12.4.2). It is
semantically appropriate to have Page Label values match the visible page number.

© 2023 PDF Association 11

4 Guidance for the standard structure types

4.1 Grouping elements

4.1.1 <Part>, <Art>, <Sect>, <Div>

<Part> is intended to sub-divide a large document into smaller elements. <Art> identifies an article
within a document or part. <Sect> identifies the sections of a document, part or article. <Div> is a
division of a document without semantic intent.

Nether ISO 32000-1 nor PDF/UA provides detailed guidance on semantically appropriate use of
these structure element types.

4.1.1.1 Example

Example A:

<Part> [e.g. category of a magazine] {

 <Art> [one article in a category] {

 <H1> [main content of the article]

 <P>

 <Sect> [info box content] {

 <P>

 <Div lang=”de-DE”> [passage of foreign language content,
where a Lang attribute is assigned to <Div>] {

 <P>

 <P>

 }

 }

 }

 <Art>

 …

}

4.1.1.2 Creation

See example above.

4.1.1.3 Consumption

To adequately enable users to navigate larger documents it is strongly recommended that
implementations be able to reflect the semantic grouping indicated by <Part>, <Art> and <Sect>
elements.

© 2023 PDF Association 12

4.1.2 <BlockQuote>

<BlockQuote> encloses longer portions of quoted content and can be used as a block-level
element or a grouping element, whereas <Quote> encloses quoted content within a paragraph
(inline element).

4.1.2.1 Examples

Example A: (a block-level quote used as a block level element)

<P>

<BlockQuote> {content}

<P>

Example B: (a block-level quote – used as a grouping element – including substructure)

<P>

<BlockQuote> {

 <P> {content}

 <P> {content}

}

<P>

4.1.2.2 Creation

No specific guidance provided.

4.1.2.3 Consumption

It is recommended that quoted content be presented such that a consumer can distinguish
between quoted and unquoted content. For example, text-to-speech (TTS) could use voicing
changes or beeps to indicate a quote, whereas a visual presentation using text extraction / reflow
may benefit from a text styling change.

© 2023 PDF Association 13

4.1.3 <Caption>

In PDF 1.7 <Caption> is described as follows:

◼ A brief portion of text describing a table or figure
◼ A <L> may contain a <Caption> as its first element (prior to the actual items)
◼ A <Table> may include a <Caption> as its first or last child element
◼ A <TOC>. See <L>, above

Where not otherwise defined for uses other than <Table>, <L> and <TOC>, it is recommended that
<Caption> structure elements be contained within a parent structure element that also contains
the content being captioned. A caption is expected to occur directly above or below the item it
captions. For <Figure> structure elements, for which current-generation AT does not expect child
structure elements, <Caption> elements are expected to occur immediately before or after as
siblings of the captioned element (see “Example A”).

For elements that allow the explicit inclusion of a <Caption> as a child element (e.g. <Table>), the
<Caption> must be the first or last direct child (see “Example C”).

4.1.3.1 Examples

Example A: (<Caption> including substructure, i.e. a single caption including two
paragraphs)

<Figure>

<Caption> {

<P>

 <P>

}

NOTE: In practice, most implementations accept direct content within a <Caption>.

Example B: (<Caption> for a table where the <Caption> occurs logically prior to the table
itself)

Examples B and C are both equally valid; the choice between them is typically made on the basis
of visual presentation order in the PDF, or on the basis of reuse considerations.

<Table> {

<Caption> [substructure, e.g. <P>]

<TR>

<TR>

}

Example C: (<Caption> for a table where the <Caption> occurs logically following the table
itself)

<Table> {

<TR>

<TR>

<Caption> [substructure, e.g. <P>]

}

© 2023 PDF Association 14

Example D: <Caption> for a list

<L> {

<Caption> [substructure, e.g. <P>]

}

4.1.3.2 Creation

In PDF 1.7 <Caption> is only intended for use with <Figure>, <Table>, <List> and structure element
types, the definitions in ISO 32000-1 14.8.4.2.

4.1.3.3 Consumption

Processors encountering a <Caption> immediately preceding or following a <Figure>, <L>, <Table>
or <Formula> structure element are recommended to assume that the <Caption> refers to that
structure element, i.e. as if the <Caption> structure element were inside that <Figure>, <L>,
<Table> or <Formula> structure element.

Processors are recommended to be prepared to encounter <Caption> elements associated with
<Formula> and <TOC> structure element types.

© 2023 PDF Association 15

4.1.4 <TOC> (table of contents) / <TOCI> (Table of contents item)

Although <TOC> and <TOCI> structure element types are very similar to <L> and structure
element types in structural terms, table of contents structure element types differ from
conventional lists (<L> and structure element types) because they explicitly provide
references into the document rather than semantically distinct content.

It is recommended that <TOC> / <TOCI> structure element types be used for all types of tables of
contents, including tables of figures or illustrations, etc. There is no restriction on the number of
tables of contents within a document.

4.1.4.1 Examples

Example A: (top-level structures usage of <TOC> & <TOCI> in a multilevel table of contents)

<TOC> {

 <TOCI> {Chapter 1}

 <TOCI> {Chapter 2}

 <TOC> {

 <TOCI> {Chapter 2.1}

 <TOCI> {Chapter 2.2}

}

}

Example B: (substructures in a <TOC> & <TOCI> context containing <Reference> without a
link)

<TOC> {

 <TOCI> {

 <P> {

 <Reference> {

 <Lbl> [In cases where the TOCI is numbered] {

 1.

 }

 {

 Introduction page 5

 }

 }

 }

 }

}

If the table of contents uses link annotations it is recommended to use <Link> structure elements
within <Reference> elements.

© 2023 PDF Association 16

Example C: (substructures in a <TOC> & <TOCI> context containing <Reference> & <Link>)

<TOC> {

 <TOCI> {

 <P> {

 <Reference> {

 <Link> {

 <Link-OBJR>

 <Lbl> [In cases where the TOCI is numbered] {

 1.

 }

 {

 Introduction page 5

 }

 }

 }

 }

 }

}

4.1.4.2 Links

PDF 1.7 does not permit a <Link> element as a direct child of a <TOCI>, however, <Link> elements
commonly do exist (even though they are not required or suggested by ISO 32000-1 or PDF/UA-1)
within <TOCI> elements.

4.1.4.3 Creation

Where a <TOCI> contains text beyond the reference to the respective chapter or other section of
the document, the <TOCI> may contain one or more <P> structure elements to enclose both the
reference and the additional text. Since ISO 32000-1 prohibits inline elements from containing
block-level elements, <Link> elements within a <TOCI> are recommended to have the Placement
attribute set with a value of Block.

PDF 1.7 implies that the <NonStruct> structure element type or Artifact marker for marked content
sequences can be used to enclose dot leaders. Accordingly, it is recommended to avoid the
<NonStruct> element in this case, and simply mark dot leaders as Artifact instead.

4.1.4.4 Consumption

Irrespective of the definitions in PDF 1.7, it is recommended that processors expect to encounter
<Link> structure elements within <TOCI> structure elements.

It is recommended that processors expect to encounter documents containing multiple Tables of
Contents.

© 2023 PDF Association 17

4.1.5 <Index>

<Index> is a grouping element for document indices. If present, it has a descriptive element and a
reference element (i.e., referring into the body of the document).

4.1.5.1 Examples

Example A: (index with a nested list as contents, giving more information about
relationships)

<Index> {

 <L> [index as a list] {

 [index topic] {

 <Lbl> [section identifier, e.g. “B”]

 <L> [list containing entries relating the topic “B”] {

 {

 <Lbl> [first entry, e.g. “Beer”]

 <LBody> [containing all references] {

 <Reference> [first page number, e.g. 20]

 <Reference> [second page number, e.g, 22-24]

 <Reference> [see also Food]

 {

 <Lbl> [numbering, if available, e.g. “Boy”]

 <LBody> [containing all references]

 <Reference> [first page number, e.g. 28]

 <Reference> [second page number, e.g, 29]

 <Reference> [see also Girl]

 [index topic] {

 <Lbl> [section identifier, e.g. “C”]

 <L> [list containing entries relating the topic “C”] {

 {…}

 }

 }

}

Example B: (without alphabetical structure)

<Index> {

 <L> [index as a list] {

 [index topic] {

 <Lbl> [section identifier, e.g. “appetizer”]

 <L> [list containing entries relating the topic “appetizer”] {

 {

 <Lbl> [first entry, e.g. “bruschetta”]

 <LBody> [containing all references] {

© 2023 PDF Association 18

 <Reference> [first page number, e.g. 20]

 <Reference> [second page number, e.g, 22]

 {

 <Lbl> [numbering, if available, e.g. “Caesar
Salad”]

 <LBody> [containing all references]

 <Reference> [first page number, e.g. 28]

 [index topic] {

<Lbl> [section identifier, e.g. “main dishes”]

 <L> [list containing entries relating the topic “main dishes”]
{

 {…}

}

 }

}

4.1.5.2 Creation

In principle, any structure element type may be used inside an <Index> element.

Typically, <Index> elements are organized as lists, and thus, in such cases, <L> and would be
used. <P> is often used, too. Although PDF/UA-1 does not forbid it, to avoid confusion with the
main body of the document it is recommended to avoid the use of heading elements inside
<Index> elements.

Note that an index is often preceded by a heading (e.g. “Index”).

4.1.5.3 Consumption

It is recommended that consuming software offer an optional mechanism to indicate the fact that
an <Index> is present, and to provide such an Index as an available target of navigation (distinct
from headings).

© 2023 PDF Association 19

4.1.6 <NonStruct>

Has no substantive role or meaning; interpretation is out of scope for consumers of tagged PDF.
NonStruct’s value is primarily as a utility for role mapping custom structure element types for
which no corresponding standard structure element type is suitable.

4.1.6.1 Examples

None provided.

4.1.6.2 Creation

A document containing custom structure elements for which there is no corresponding standard
structure type, but where the content and child elements are intended to be real content. In such a
case appropriate semantics require a writer to role map the custom element type to NonStruct.

4.1.6.3 Consumption

NonStruct has no semantic significance, but its content and contained structure elements may
well have significance. A consuming processor would be expected to pass these children to AT and
other processors.

© 2023 PDF Association 20

4.1.7 <Private>

Akin to <NonStruct>, this element differs from <NonStruct> insofar as not only the structure
element itself, but the children of the structure element, including structure elements and
content, are also ignored.

4.1.7.1 Examples

None provided.

4.1.7.2 Creation

This element is useful only for private purposes.

4.1.7.3 Consumption

Ignore the element and its contents.

© 2023 PDF Association 21

4.2 Block level structure element types

4.2.1 <P> (paragraph)

Paragraphs comprise the most common content type in most documents. <P> generally encloses
distinct portions of content that are not otherwise specified with other block level structure
element types such as heading, table or list elements.

<P> is often a good “backup” choice when no other structure type is semantically appropriate, or
as a fallback in role-mapping.

4.2.1.1 Example

Example A

<P> {content of the paragraph}

4.2.1.2 Creation

As ISO 32000-1 prohibits content as a direct child of grouping structure element types (see ISO
32000-1, 14.8.4.2 “Grouping elements”), in the absence of other semantics, it is typically
appropriate to write a <P> structure element inside a grouping element unless the content is a
heading, table or list.

<P> is used to identify individual paragraphs. It is not semantically appropriate to enclose several
paragraphs with a single <P> structure element, or to directly nest <P> structure elements.

4.2.1.3 Consumption

Some viewers may wish to reflow text enclosed in <P> structure elements. In such cases a visible
separation of the contents of individual <P> structure elements is conventional.

© 2023 PDF Association 22

4.2.2 <H1>—<H6> (headings)

PDF/UA-1 requires heading-levels not be skipped (e.g., <H1>, <H2>, <H4>). However, otherwise
well-structured documents exist in which heading-levels are skipped and where modification of
the content is not an option. In such cases, although a PDF/UA flag cannot be used, it is
recommended that the file to conform with PDF/UA in all other respects.

PDF/UA-1 requires the use of <H7> and higher heading levels if semantically appropriate. Such
structure types are undefined in PDF 1.7. PDF/UA requires a mapping for undefined elements;
accordingly, in this case it is recommended that <H7> and higher levels of headings be role
mapped to <P> or <H6>, depending on the nature of the content and the heading structure in it. If
it is more important to not mis-represent a heading of a nesting level higher than <H6> as <H6>,
mapping to <P> is recommended, whereas if it is more important to represent a heading of a
higher nesting level than H6 as a heading, rather than turning it into a paragraph, mapping to <H6>
is recommended.

There is no structure element type or syntax for subheadings. Instead, use, <P> and/or
structure types.

4.2.2.1 Examples

Example A: (in a single paragraph)

<H1> {The Mothers [e.g. huge, bold typeface] [line break]

 {Fillmore East - June 1971 [e.g. small, regular typeface]

}

}

Example B: (in two paragraphs)

<H1> {The Mothers}

<P> {Fillmore East - June 1971}

Headings are not to be confused with document titles, for which no structure type exists in ISO
32000-1.

4.2.2.2 Talking about titles

A title is information representing the normal means of referring to the document. Titles can be
present as both metadata entry and page-content. In PDF:

◼ The metadata entry for a PDF document’s title is represented using XMP.
◼ A document title appearing as page content is commonly tagged with <H1>.2

Since PDF/UA-1 does not require any specific structure type for title content, it is permissible to
structure such content with either <H1> or other structure element types (typically, <P> or
structure element types mapped to <P>).

2 The background of this unfortunate reality is complex; its discussion is out of scope for this document.

© 2023 PDF Association 23

Page content representing the title can - especially in publications - appear several times in the
document. If <H1> structure elements are used to enclose such content, it is recommended that
only one such instance of the title be structured as <H1>.

Since headings commonly appear in tables of contents, and since document titles do not normally
appear in tables of contents, a future-proof (PDF 2.0) approach would be to use a <Title> structure
type (which is defined in PDF 2.0, see Annex B) mapped to the <P> structure type. Upgrading this
document to PDF 2.0, therefore, would then simply require deletion of this role map.

4.2.2.3 Sidebars

Sidebar content offers challenges for implementers of tagged PDF in PDF 1.7, and especially, those
sidebars that include content styled in a manner similar to that of headings in the main body of
content.

Since PDF 1.7 does not include a structure element type specific to sidebars or similar content,
when heading structure elements are used in a sidebar, they must be semantically appropriate in
the context of the document as a whole, that is, be consistent with the other heading structure
elements in the document.

As a work-around for cases in which sidebars include content that would (if tagged with heading
structure elements) not be semantically appropriate in the context of the overall document, then
<P> structure elements are likely to be the most semantically appropriate structure type for the
“headings” within the sidebar.

Another workaround is to use a <Div> element with a layout attribute appropriate to the content.
Although many AT implementations do not yet support such a construct, such <Div> elements can
provide processors with a means of distinguishing such content.

Another work-around is to linearize the structure entirely, eliminating the problem, but at the cost
of being forced to include the sidebar’s content within the overall document’s logical structure.

4.2.2.4 Examples

Example A:

<H1> [first heading, no title present]

<P>

<H2>

<P>

Example B:

<P> [encloses document title]

<H1> [first main heading, e.g.”1. Top level heading”]

<P>

<H2> [heading, 2nd level, e.g. “1.1 2nd level heading”]

<P>

Example C:

<Title> [encloses document title (role-mapped to <P>)]

<H1> [first main heading]

© 2023 PDF Association 24

<P>

<H2>

<P>

Example D:

<H1> [encloses document title]

<H2> [first main heading]

<P>

<H2>

<P>

In examples A, B and C, it is semantically acceptable to use the <H1> headings several times.
Example D, a case of <H1> used for a title (which is not a violation of PDF/UA-1), is only
semantically appropriate if there is only one <H1> in the document.

4.2.2.5 Creation

Even though ISO 32000-1 has no structure type matching the concept of “title”, it is recommended
that such content not be structured with <H1> or <H> unless it is the only <H1> in the document
(as per Example D, above). If the creator chooses to create a <Title> (or similarly-intended)
structure element type (which is acceptable), it is recommended to map such structure element
types to <P>.

WARNING: Tools creating PDF/UA documents may insert empty heading structure element types
to fill the gap that would otherwise be left by skipped heading levels. This behavior cannot result
in conformance with PDF/UA or WCAG 2.x.

4.2.2.6 Consumption

A common use of headings is to dynamically generate a table of contents (or other navigational
mechanism).

Since heading levels above 6 are explicitly permitted in PDF/UA, it is recommended that
processors be prepared to encounter heading levels above 6 irrespective of mapping.

© 2023 PDF Association 25

4.2.3 <H> (heading, strongly structured)

Due to a lack of suitable tools, this structure element is impractical, and its use is not
recommended.

4.2.3.1 Examples

None offered.

4.2.3.2 Creation

No specific guidance provided.

4.2.3.3 Consumption

No specific guidance provided.

© 2023 PDF Association 26

4.2.4 <Lbl>

<Lbl> encloses content that labels other content. Although described as a BLSE in PDF 1.7, this
structure element is always an ILSE in practice (this error in the 1.7 specification is corrected in
PDF 2.0).

The concept of “label” differs in tagged PDF compared to HTML:

◼ In tagged PDF, <Lbl> elements are not limited to lists, and are always explicitly contained.
<Lbl> structure elements may be used whenever content serves as a label for some other
content, for example, “Fig: 123” in a caption for a <Figure>.

◼ In HTML, labels for list items are implied by the list structure elements, and (possibly) by
CSS. The <label> structure element in HTML only applies to labels for an item in a user-
interface (e.g., form-fields or buttons).

4.2.4.1 Examples

Example A: (Bullet list)

<L> {

 {

 <Lbl> [bullet]

 <LBody> {content}

 }

}

Example B: (numbered list)

<L> {

 {

 <Lbl> [list item number]

 <LBody> {content}

 }

}

Example C: (Table of Contents)

<TOC> {

 <TOCI> {

 <Lbl> [chapter number]

 <P> {content}

 }

}

Example D: (Labels in notes)

See the <Note> element.

The above are examples; other variations are also possible.

© 2023 PDF Association 27

4.2.4.2 Creation

No specific guidance provided.

4.2.4.3 Consumption

No specific guidance provided.

© 2023 PDF Association 28

4.2.5 <L> (List), (List Item), <LBody> (List Body)

The <L> (list) structure element encloses a sequence of one or more content items with
structure elements enclosing each content item. <Lbl> encloses the list item marker for each
content item, while <LBody> encloses the content item’s content.

For PDF 1.7 (and thus, PDF/UA-1) requires that if present, a list’s caption is enclosed in a <Caption>
structure element and precedes the structure elements within the captioned <L>.

4.2.5.1 Examples

Example A: (a simple list)

<L> {

 <Caption>

 {

 <Lbl>

 <LBody>

 }

}

Although a canonical form can be derived from ISO 32000-1, the specification does not prohibit
other parent-child relationships between the various standard structure elements in a list. As a
result, it is recommended that processors be able to handle various forms of lists, including cases
in which a <LBody> encapsulates another list that is structurally unrelated to the <LBody>’s parent
<L>. Examples of acceptable list structures follow.

Example B: (a canonical multilevel list)

<L> {

 {

 <Lbl>

 <LBody>

}

 {

 <Lbl>

 <LBody>

 }

<L> {

 {

 <Lbl>

 <LBody>

}

 {

 <Lbl>

 <LBody>

© 2023 PDF Association 29

}

 {

 <Lbl>

 <LBody>

 }

}

Example C: (another commonly encountered, though incorrect, form of nested list)

This model (multilevel list) is borrowed from HTML.

Multilevel list in PDF Corresponding multilevel list in HTML
<L> {

 {

 <L> […]

 }

}

 or in HTML

 in HTML

 or in HTML

Example D: (a list containing another, semantically unrelated list)

In this example the two <L> structure elements represent independent structures.

<L> {

 {

 <Lbl>

 <LBody>

}

 {

 <Lbl>

 <LBody> {

 <P>

 <P>

<L> {

 {

 <Lbl>

 <LBody>

}

 {

 <Lbl>

 <LBody>

}

 }

 <P>

 }

© 2023 PDF Association 30

 }

 {

 <Lbl>

 <LBody>

 }

}

4.2.5.2 Creation

For each content item that has a list item marker – such as a bullet or list-numbering – semantic
appropriateness requires that the list item marker is enclosed in a <Lbl> structure element.

Semantic appropriateness requires that, apart from the list-item’s label itself, the semantic
content of each list item be enclosed in an <LBody> structure element, including inline content or
arbitrary complex structures.

4.2.5.3 Consumption

It is recommended that processors expect to encounter real content as the direct child of an
structure element. In such cases, it is recommended that processors treat such content as if it
were enclosed in an <LBody> structure element.

© 2023 PDF Association 31

4.2.6 <Table>, <TR>, <TH>, <TD>, <THead>, <TBody>, <TFoot>

Table structure types enclose content whose semantics are defined by representation in a matrix
of rows and columns.

4.2.6.1 Examples

Example A: (simple data table, without Headers and IDs)

<Table> {

 <TR> {

 <TD>

 <TD>

 }

 <TR> {

 <TD>

 <TD>

 }

}

Example B: (more complex table, with headers, additionally structured)

<Table> {

 <THead> {

 <TR> {

 <TH ID=”R1C1_Table” Scope=”Column”>

 <TH ID=”R1C2_Table” Scope=”Column”>

 }

 }

 <TBody> {

 <TR> {

 <TD>

 <TD>

 }

 <TR> {

 <TD ColSpan=”2”>

 }

 <TFoot> {

 <TR> {

 <TD>

 <TD>

 }

 }

}

© 2023 PDF Association 32

4.2.6.2 Creation

Semantic appropriateness requires that:

◼ irrespective of the use of table authoring tools, table structure elements cannot be used to
represent content that does not depend on a matrix of rows and columns for its meaning
(e.g., it would be incorrect to use table structure elements in a case where an author has
used a table authoring tool simply to align logos with text).

◼ cells that span rows or columns include appropriate colspan and rowspan attributes.
◼ tables spanning multiple pages are structured as a single table. <TH> cells in repeated

header rows or columns (e.g., in the case of tables that span multiple pages) are marked as
artifacts.

◼ empty cells are always <TD> cells, never <TH> cells.
◼ table cells are always part of semantic table structures. An example of a semantically

impermissible use of table cells would be an empty row or column separating content that
is semantically two (or more) tables.

Rows and columns may use a mix of <TH> and <TD> cells to allow representation of complex
tables.

The primary function of the optional <THead>, <TBody> and <TFoot> structure element types is to
aid consuming software in repurposing paginated tables.

4.2.6.3 Consumption

AT provides users with information about the relationship between <TH> and <TD> cells.

© 2023 PDF Association 33

4.2.7

The primary purpose of is to demarcate content for the purpose of applying semantic and
other attributes. Although the structure element type itself has no inherent semantics,
semantic information is provided by attributes employed on a given instance of a
structure element type.

 can serve in many capacities but is most useful for subdividing smaller regions of content,
such as words within a <P>. may be used as a vehicle for language (Lang), replacement
content (ActualText), alternate description (Alt) and expansion (E) attributes, and various
presentational, layout and other attributes documented in ISO 32000-1, 14.8.5.4 “Layout
Attributes”.

4.2.7.1 Examples

Example A:

<P> { This is the {

 {

 NASA

 }

press release.

}

4.2.7.2 Creation

No specific guidance provided.

4.2.7.3 Consumption

No specific guidance provided.

© 2023 PDF Association 34

4.2.8 <Note>

<Note> structure elements encompass footnotes and endnotes, and typically operate in
conjunction with <Reference> structure elements.

4.2.8.1 Examples

Example A: (Footnote tagged inline):

A possible method for handling <Note> structure elements for which references exist is to locate
the note directly following the reference in the logical reading order, as in the following (<Lbl> is
most suitable to tag the reference symbol):

<P> {

 <Reference> {

 <Lbl>

 }

 <Note> {

 <Lbl>

 <P>

 }

}

The following example includes a representation of a page-rendering followed by a representation
of the structure appearing on the page. In this case the <Note> structure elements are located
directly following their respective references in the text.

The tagged content of the example:

<P> { The first reference {

<Reference> {

<Lbl> {1)}

}

<Note> {

<Lbl> {1)}

<P> {The first idea is to understand footnotes}

}

© 2023 PDF Association 35

for the first footnote on this page, the second reference

<Reference> {

<Lbl> {2)}

}

<Note> {

<Lbl> {2)}

<P> {for the second idea is to make them work in PDF}

}

for the second footnote on this page, and so on.

}

Example B: (Commonly-encountered work-around)

WARNING: This approach is not official, but well-known and otherwise high-quality agents are
known to use this work-around, so the ability to process this circumstance is recommended.

Simply put, it is recommended that developers be prepared to process instances in which a
<Note> structure element occurs immediately after the structure element containing the
<Reference> structure element that targets the <Note>.

In the following extended example, the logical presentation (in the structure tree) of the footnotes
is shown highlighted while the physical rendering remains at the bottom of the page. As in
Example A, above, a representation of the structure follows.

The tagged content of the example:

<P> { The first reference {

<Reference> {

<Lbl> {1}

}

for the first footnote on this page, the second reference

<Reference> {

<Lbl> {2}

}

© 2023 PDF Association 36

for the second footnote on this page, and so on.

<Note> {

<Lbl> {1)}

<P> {The first idea is to understand footnotes}

}

<Note> {

<Lbl> {2)}

<P> {for the second idea is to make them work in PDF}

}

}

Example C: (Footnote with link)

<P> [content] {

 <Link> [Destination] {

 <Link-OBJR>

<Lbl> {1}

 }

[more possible content]

<Note> [the Destination of the Link] {

<Lbl>{1)}

<P> [content of the footnote] {

 <Link> [Link back to the reference point]

 <Link-OBJR>

}

 }

}

NOTE Links for footnotes, in both directions, are not required by PDF/UA, but are
recommended.

Example D: (Footnotes / endnotes referenced from multiple locations)

Although ISO 32000-1 does not describe an explicit mechanism to address endnotes referenced
from multiple locations, the use case is readily resolved by taking advantage of the fact that the
contents of a given footnote’s <Lbl> structure element are typically also present inside the
corresponding <Reference> structure element.

4.2.8.2 Semantics of supplemental or explanatory content “notes”

The term “Note” in running text is commonly used to identify supplementary content for content
contained within another element. It is semantically inappropriate to apply <Note> structure
elements to such “notes”. Instead, such cases are best distinguished by a grouping element, as in
the following example:

<Part> [A grouping element] {

 <P> [content]

 <P> [A note pertaining to the content]

© 2023 PDF Association 37

}

Especially in the context of <L>, <Figure>, <Formula> or <Table> structure elements, <Caption> is
usually the semantically appropriate structure element rather than a <Note>.

4.2.8.3 Creation

It is strongly recommended that <Note> structure elements only be used for explicitly referenced
content such as footnotes, endnotes, or table or figure notes (a type of footnote), irrespective of
pagination.

As shown in Example B, in PDF 1.7, association between a <Reference> and its <Note> structure
element may most readily be accomplished by ensuring that the <Lbl> in a <Reference> structure
element matches the <Lbl> in the corresponding <Note> structure element. However, this
approach is only fully reliable when:

• the label is not repeated elsewhere in the document, or
• the same-labelled <Note> follows the <Reference> in the logical reading order.

Notes may be inline, block or grouping elements, and therefore may include substructures.

4.2.8.4 Consumption

Following Example B, to find notes for a given reference, from a <Reference> structure element,
search forward in the logical reading order for a <Note> structure element containing a <Lbl>
structure element with the same content as the <Reference> structure element’s <Lbl>.

Optionally, provide a mechanism to hide <Note> content unless visited from a <Reference>. In
general, AT conforming to PDF/UA is obliged to provide functionality that presents <Reference>
and <Note> structure elements in a suitable way, for example:

◼ informing the user when a <Reference> is encountered
◼ providing navigation to the associated <Note> content
◼ allowing a user to return to the <Reference> after visiting the matching <Note>
◼ skipping <Note> structure elements when reading text sequentially
◼ handling <Note> structure elements as ILSE, BLSE or grouping elements, depending on

usage.

NOTE 1 <Reference> and <Note> structure elements do not exist in HTML.

NOTE 2 Due to limitations in the underlying PDF specification, although PDF/UA-1 requires ID
attributes on <Note> structure elements, they provide no added value to consuming
processors.

A link on a reference may target a Destination (ISO 32000-1, 12.3.2 “Named Destinations”),
however, use of this feature by AT requires detailed session navigation. Absent such navigation, it
is recommended to allow users to return to the <Reference> structure element in the text (this
applies to all document-internal links; not just in the Reference/Note context).

© 2023 PDF Association 38

4.2.9 <Reference>

<Reference> structure elements encompass content that refers to other content, typically, the
contents of respective <Note> structure elements (see 4.2.8, “<Note>” for additional guidance in
that context) or within an <Index> or <TOC>. It is mostly often used as an inline element.

<Reference> elements do not, by themselves, imply any specific interactivity. If interactivity is
desired, Link annotations (and their respective <Link> structure elements) are needed. See "Link
within Reference" in this subclause.

4.2.9.1 Examples

Example A: (usage within a paragraph)

<P> [content] {

 <Reference> [content of reference, e.g. “1”]

 }

possible more content

}

Example B: (usage within a <TOC>)

<TOC> {

 <TOCI> {

 <Reference> {The content of a headline}

 }

}

Example C: (usage within a <TOC> including <Reference> & <Link>)

(This example is copied from clause 4.1.4)

<TOC> {

 <TOCI> {

 <P> {

 <Reference> {

 <Link> {

 <Link-OBJR>

 <Lbl> [In cases where the TOCI is numbered] {

 1.

 }

 {

 Introduction page 5

 }

 }

 }

 }

 }

© 2023 PDF Association 39

}

4.2.9.2 Creation

Whether a <Reference> structure element is used in the context of a cross-reference or in the
context of a footnote or endnote may be distinguished by the presence of a <Lbl> structure
element as follows:

• A <Reference> structure element containing a <Lbl> structure element is assumed to point to a
footnote / endnote, bibliography reference or other such target. In such cases, the contents of
the <Lbl> structure elements in both the originating and target structure elements exactly
match, and in addition, there is no footnote / endnote present between a <Reference>
structure element and its corresponding footnote / endnote with the same <Lbl>.

• A Reference structure element not containing a <Lbl> structure element is assumed to be a
cross-reference. This also applies to <Reference> structure elements contained in <TOCI> or
<Index> structure elements as defined in ISO 32000-1 Table 333.

4.2.9.3 Consumption

Based on the creation practice proposed above it is always possible to determine the <Note>
corresponding to a given footnote or endnote’s <Reference> structure element, as follows:

• When encountering a footnote or endnote <Reference> structure element, use the
contents of the <Lbl> structure element as an identifier. Search forward for the first <Note>
structure element containing the identifier as the content of its <Lbl> structure element.

• It is possible to find the originating <Reference> from a given <Note>’s <Lbl> by means of
scanning backwards in the document to find the matching <Lbl> in a <Reference>
structure element.

NOTE: <Reference> and <Note> structure elements do not exist in HTML.

An AT wishing to take advantage of <Reference> can offer a means of round-trip navigation from a
<Reference> structure element to the matching <Note> structure element. It is recommended that
such implementations take into account that more than one <Reference> may point to the same
<Note> structure element.

<Link> within <Reference>

<Reference> elements can include <Link> structure elements. The nesting of <Link> elements
within <Reference> elements is expressed by some APIs with two announcements of a link instead
of one. This behavior is semantically inappropriate.

© 2023 PDF Association 40

4.2.10 <BibEntry>

Intended to semantically identify individual entries in a bibliography, this structure element
simply serves to group content for reuse.

Support for this structure element by AT is not anticipated.

4.2.10.1 Examples

None provided.

4.2.10.2 Creation

No specific guidance provided.

4.2.10.3 Consumption

No specific guidance provided.

© 2023 PDF Association 41

4.2.11 <Code>

Intended to semantically identify code examples, this structure element serves to indicate that
enclosed content would preferably be represented precisely; without further modification (for
example: justification, cleanup of white space). However, use of this structure element does not
imply that extraction would result in usable code.

Support for this structure element by AT is not anticipated.

4.2.11.1 Examples

None provided.

4.2.11.2 Creation

No specific guidance provided.

4.2.11.3 Consuming

No specific guidance provided.

© 2023 PDF Association 42

4.2.12 <Link>

The <Link> structure element typically associates content and actionable link annotation(s).

4.2.12.1 Examples

Example A:

<P> { Visit the

 <Link> {

 [link text, eg. URL of the website]

 OBJR-xxx (https://…)

 }

today!

}

4.2.12.2 Creation

PDF/UA-1 does not require that <Link> structure elements enclose content.

Multiple link annotations enclosed in a single <Link> structure element

To avoid ambiguity, it is recommended that link annotations enclosed by a single <Link> structure
element have the same action.

Support for QuadPoints allows for more reliable experiences with interactive viewers. Without
QuadPoints, very common cases (e.g. URLs breaking across one or more lines) may lead to
multiple annotations and undesirable user experiences.

Although in general OBJRs may appear at any location within the <Link> element, for links that
span pages, it is recommended that all OBJRs be next to each other in the logical order, as in the
following example:

<P> {

 <Link> {

 [PAGE 7]

 https://www

 OBJR 1

 [page break]

 [PAGE 8, link continues]

 OBJR 2

 .pdfa.org

 }

}

The Contents key

Although required by PDF/UA-1, in practice, many common tools do not provide easy access to the
Contents key of link annotations. Many (or most) current-generation AT and other software do not
process this key. Typical workarounds to achieve formal PDF/UA conformance include automated
population of the Contents key from (for example) the Alt key in the <Link> structure element.

© 2023 PDF Association 43

NOTE: Relaxation of the Contents key requirement in PDF/UA-1 is anticipated in PDF/UA-2.

4.2.12.3 Consumption

As discussed above, it is recommended to be prepared for cases in which multiple links are
encoded representing a single (logically speaking) link object (e.g., a single semantic link spanning
two lines of text).

In the case where a single <Link> structure element encloses multiple link annotations, and where
all link annotations have identical targets, and if it is semantically correct to do so, representing a
single link to the user is likely to deliver a better user experience.

© 2023 PDF Association 44

4.2.13 <Annot>

The <Annot> structure element encloses annotations other than links and widgets (see 4.3.3,
“<Form>”).

There are two classes of annotations:

◼ Markup annotations, or annotations used like markup annotations. The <Annot> structure
element encloses the marked-up content and the object reference to the actual annotation.
These may be nested.

◼ Other annotations. The <Annot> structure element typically only encloses the reference to
the actual annotation.

4.2.13.1 Examples

Example A:

<Annot> {

 Content

 OBJR [pointing to <Annot> of type “Highlight”]

}

Annotations may contain video, 3D and other non-PDF content, the accessibility of which is
outside the scope of this Guide. It is recommended that developers seek out appropriate guidance
on ensuring these formats are accessible.

4.2.13.2 Creation

A challenge can arise when content to be marked up by a markup annotation is not already
represented by a structure element, and thus cannot be directly associated with the annotation. In
such a case it is often semantically appropriate to enclose the marked-up content in marked-
content sequences which can then be associated with the <Annot> structure element together
with the actual annotation.

Some housekeeping might be necessary regarding other marked-content sequences and structure
elements around the marked-up content.

4.2.13.3 Consumption

It’s vital to avoid a case where consumers experience two renditions of the same alternative
content. Accordingly, it is recommended that processors be sensitive to the use of the Contents
key in the annotation as well as the use of the Alt property on the enclosing structure element.

When presenting marked-up content to a user, it is recommended that the following aspects be
included in that presentation:

◼ The marked-up content
◼ The fact that the content is marked-up, and the type of markup annotation
◼ The contents of the Annotation’s content entry
◼ Any annotations that are replies to the Annotation

While not mandated by conforming reader provisions in PDF/UA-1, it is recommended that
processors also make available annotation properties, for example: author, subject, status,
date/time, checkmark.

© 2023 PDF Association 45

4.2.14 <Quote>

<Quote> encloses quoted content within a paragraph (inline element). See also <BlockQuote> a
block-level element that encloses longer portions of quoted content.

4.2.14.1 Examples

Example A:

A quote within a paragraph:

<P> { some text {

 <Quote> {quoted text}

 }

 more text

}

4.2.14.2 Creation

Where quoted content exists inside a paragraph or other block-level structure element, the
<Quote> structure element is used.

Where quoted content does not exist inside a paragraph or other block-level structure element,
the <BlockQuote> structure element is used.

4.2.14.3 Consumption

It is recommended to present quoted content such that a consumer can distinguish between
quoted and unquoted content.

For example, text-to-speech (TTS) could use voicing changes or beeps to indicate a quote, whereas
a visual presentation using text extraction / reflow may benefit from a text styling change.

© 2023 PDF Association 46

4.2.15 <Ruby>, <RB>, <RT>, <RP>, <Warichu>, <WT>, <WP>
These structure elements represent specific cases in Japanese typography.

No guidance provided at this time.

© 2023 PDF Association 47

4.3 Illustration elements

4.3.1 <Figure>
A <Figure> element encloses content that, however encoded, represents non-textual visual
content (e.g., a photograph, an illustration, etc.).

PDF 1.7 does not specify a mechanism to associate <Figure> structure elements with their
<Caption> structure elements, or associate multiple figures together, or apply a caption to
multiple figures.

In the context of <Figure> structure elements, it is recommended to locate the <Caption> structure
element following the <Figure> structure element, as this practice ensures a reasonable context
for the <Caption> is provided to users of relatively basic consumption software.

NOTE In principle, other grouping elements such as <Part>, <Sect>, etc. could be used. In
most cases, however, these would be semantically inappropriate for the purpose of grouping
<Figure> structure elements.

4.3.1.1 Examples

Example A: (A <Figure> with a <Caption> following the <Figure>)

<Figure> [A structure element enclosing an actual image]

 {CONTENT} [The actual image or illustration]

<Caption> [The Figure’s caption]

Example B: (A <Figure> with a <Caption> preceding the <Figure>)

<Caption> [The Figure’s caption]

<Figure> [A structure element enclosing an actual image]

 {CONTENT} [The actual image or illustration]

Example C: (Multiple <Figure> elements with <Caption>elements)

<Figure> [A structure element enclosing an actual image]

{CONTENT} [The actual image or illustration]

<Caption> [The first figure’s caption]

<Figure> [A structure element enclosing an actual image]

 {CONTENT} [The actual image or illustration]

<Caption> [The second figure’s caption]

Example D: (<Figure> without <Caption>)

While it’s preferred for <Figure> structure elements to include <Caption> elements there are many
use cases where a <Figure> does not have a <Caption> (e.g.: a logo, title-page image, in-line
graphics such as smileys, symbols or other illustrative content). Such cases may be handled as in
the example:

<Figure> {CONTENT} [The actual image or illustration]

4.3.1.2 Creation

No specific guidance provided.

© 2023 PDF Association 48

4.3.1.3 Consumption

In the case of a <Figure>’s <Caption> element, it is recommended that both the <Caption> and the
Alt property for the <Figure> be presented to the user.

© 2023 PDF Association 49

4.3.2 <Formula>

Encloses content normally perceived as a formula or equation, whether used inline or as a display
formula (block level). The use of <Formula> is not limited to math; it may (in principle) be applied
in other areas of science such as chemistry or physics.

Individual symbols may or may not be enclosed in a <Formula> based on context.

4.3.2.1 Examples

Example A: (Formula as Text)

<Formula> {2 + 2 = 4}

Example B: (Formula as a Figure)

<Formula> {

}

4.3.2.2 Creation

For formulas represented with raster and/or vector images, it is semantically appropriate to use
<Formula> rather than a <Figure> structure element since these objects, whatever their encoding,
are in a semantic sense, formulas, not figures.

Consider using MathML as (in PDF 1.7) custom structure types mapped to . For table-like
structures, consider leveraging Table structure elements. Map the <Math> structure element to
<Formula>.

Note that PDF/UA requires that a <Formula> structure element include an Alt attribute (PDF/UA-1,
7.7).

It is recommended that although content inside a <Formula> structure element may make use of
an ActualText property, it’s preferred to do so only on very small pieces of content, such as
ligatures. It is recommended that the ActualText property be on the respective structure
element, not the <Formula> structure element.

4.3.2.3 Consumption

Due to ambiguities in English, where “figure” may be understood to refer to a mathematical
formula, quite often the <Figure> structure element is used to enclose math, which is semantically
incorrect. It is recommended that processors be prepared to encounter this case.

© 2023 PDF Association 50

4.3.3 <Form>

<Form> structure elements are used to enclose form field widgets (ISO 32000-1, 12.5.6.19),
identifying and ordering them for consumption by AT. Some types of PDF form fields have a single
interactive object (in PDF parlance, a “widget annotation”) associated with them (e.g., pushbutton
or text form field), others, as in the case of radio button groups, can have several interactive
objects associated with them.

4.3.3.1 Form fields vs. widget annotations

Each <Form> element encloses a single widget annotation. This implies that for form fields with
several widget annotations, several <Form> elements are necessary. There is no pre-defined
element in the logical structure of the document that ties together widget annotations belonging
to the same form field; instead, the data model relies on the T key (form field name).

Regarding non-interactive forms, see 5.3, “PrintField attributes”.

4.3.3.2 Labeling form fields

ISO 32000 does not provide any specific mechanism for identifying form field labels in page
content. Such association can only be provided by way of context and logical ordering (i.e.,
placement of a <Lbl> structure element next to the form field and/or the <Form> elements
associated with it. Accessible PDF forms are those in which both logical and Acroform structures
are in alignment.

4.3.3.3 Radio button form fields

A radio button form field contains widgets for each button within the radio button group. The
<Form> structure element in the logical structure always points to widgets. For a form field with
two radio buttons, two <Form> structure elements are required to link them to the logical
structure.

The Opt entry

The optional Opt key accommodates cases where the value of each radio button is not suitable for
presentation to human users. Using the Opt array, each radio button’s value can be associated
with a more human-readable version of that value. The example shown below uses “F” and “H” for
the values; the Opt key provides more readable versions of these values in the form of “Frau” and
“Herr”.

A simple radio-button example:

© 2023 PDF Association 51

Logical Structure Acroform Structure
<H2> {Prefix:}

<P> {

 <Form> {

 widget

 Ms.

 }

 <Form> {

 widget

 Mr.

 }

}

<<

 /FT/Btn

 /Ff 33603584 % - “radio button”

 /T (Prefix)

 /TU (Prefix)

 /V /Ms

 /Opt [% - order must match that of the /Kids array

 (Ms.)

 (Mr.)

]

 /Kids [

 <<

 /Type /Annot

 /Subtype /Widget

 /AS /F

 /AP <<

 /N <<

 /Off << … >> % - Appearance of “off” state

 /F << … >> % - Appearance of “F” state

 >>

 >>

 ...

 >>

 <<

 /Type /Annot

 /Subtype /Widget

 /AS /Off

 /AP <<

 /N <<

 /Off << … >> % - Appearance of “off” state

 /Mr << … >> % - Appearance of “H” state

 >>

 >>

 ...

 >>

]

>>

© 2023 PDF Association 52

Logical Structure Acroform Structure
<H2> {Anrede:}

<P> {

 <Form> {

 widget

 Frau

 }

 <Form> {

 widget

 Herr

 }

}

<<

 /FT/Btn

 /Ff 33603584 % - “radio button”

 /T (Anrede)

 /TU (Anrede)

 /V /Frau

 /Kids [

 <<

 /Type /Annot

 /Subtype /Widget

 /AS /Frau

 /AP <<

 /N <<

 /Off << … >> % - Appearance of “off” state

 /Frau << … >> % - Appearance of “Frau” state

 >>

 >>

 ...

 >>

 <<

 /Type /Annot

 /Subtype /Widget

 /AS /Off

 /AP <<

 /N <<

 /Off << … >> % - Appearance of “off” state

 /Herr << … >> % - Appearance of “Herr” state

 >>

 >>

 ...

 >>

]

>>

4.3.3.4 Creation

Form field labels in page content will in many cases be the same as the content of the TU key.
Although not strictly required under all circumstances, the most straightforward approach to
providing an alternate description for form fields is to provide the TU entry in the form field
dictionary, which is typically presented when the user has focus on the widget annotation.

© 2023 PDF Association 53

When “flattening” interactive form fields, use PrintField attributes to ensure the (now) non-
interactive form is represented in an accessible fashion.

4.3.3.5 Consumption

It is recommended that interactive viewers encountering forms using PrintField attributes
indicate that such forms are “read only”.

It is recommended that readers avoid an approach in which the user has only form fields
presented, and by implication, may miss other content.

How to find out the meaning of each radio button

It is recommended that each widget in a radio button form field contain two entries in the
appearance dictionary’s N (normal) key in which one of these entries has the name “Off”; the other
key has a name that represents the meaning of that radio button (e.g. “Frau” and “Herr” in the
above example).

How to get the current value of the current radio button form field

The current value of a radio button form field is represented by the V key in the radio button form
field. In the case of missing V key the value is “Off”.

© 2023 PDF Association 54

5 Attributes and properties

5.1 Layout attributes
Layout (position, color, etc.) is not encoded into PDF content streams in a way that strongly
associates stylistic properties with content. It is semantically inappropriate to fail to include layout
attributes necessary to convey the semantics of a given use of colour, contrast, format or layout.

5.1.1 Standard layout attributes

Exhaustive conformance requirements for the use of standard layout attributes (see ISO 32000-2,
Tables 378, 379 and 380) are described in Table 1, “Requirements for standard layout attributes”
using the following terms:

◼ “Required” The attribute always has a semantic purpose. Semantic appropriateness
requires that it be present in all cases of applicable structure elements when the relevant
semantic property is present in the content and differs from the default value (if any)

◼ “Required if semantic” The attribute often has a semantic purpose. Semantic
appropriateness requires that it be present in all cases of applicable structure elements
when the relevant semantic layout property is present in the content; is intended to have
semantic significance; and differs from the default value (if any)

◼ “Not required” The attribute is optional, rarely has a semantic purpose and is never required
to be present on any structure element

Table 1: Requirements for standard layout attributes

Structure
elements

Attribute Conforming usage implied by PDF/UA-1

Any structure
element

Placement Not required

Default value: Inline

Writing Mode Required

EXAMPLE: Text written from right
to left.

Default value: LrTb

BackgroundColor Required if semantic

EXAMPLE: Background color of a
TD structure element identifying a
group of cells.

Default value: (none)

BorderColor Required if semantic

EXAMPLE: The border of a box in
which the box’s appearance
denotes the significance of the
content (such as an alert).

© 2023 PDF Association 55

Structure
elements

Attribute Conforming usage implied by PDF/UA-1

Default value: (Current text fill color in
effect)

BorderStyle Required if semantic

EXAMPLE: Lines used to represent
relationships in an organization
chart.

Default value: None

BorderThickness Required if semantic

EXAMPLE: A table cell where
thicker lines are used to denote
that the cell contains a summation
of other cells’ values.

Default value: (none)

Color Required if semantic

EXAMPLE: Use of colour in a chart
legend.

Default value: (Current text fill color in
effect)

NOTE Despite the default value for
Color, to facilitate access to this
attribute, it is useful to set this
value in all semantic cases.

Padding Not required

Any BLSE;
ILSEs with
Placement
other than
Inline

SpaceBefore Required if semantic

EXAMPLE: Visual grouping

Default value: 0

SpaceAfter Required if semantic

EXAMPLE: Visual grouping

Default value: 0

StartIndent Required if semantic

EXAMPLE: Different levels of
indentation of lines for code in a
programming language.

Default value: 0

© 2023 PDF Association 56

Structure
elements

Attribute Conforming usage implied by PDF/UA-1

EndIndent Required if semantic

EXAMPLE: Lines of code.

Default value: 0

BLSEs
containing
text

TextIndent Not required

TextAlign Not required

Figure,
Formula and
Table

BBox Required

EXAMPLE: A collection of paths
whose semantic value arises from
their consideration as a whole.

NOTE: Current-generation AT often
relies on this attribute.

Width Not required

Height Not required

TH (Table
header), TD
(Table data)

Width Not required

Height Not required

BlockAlign Not required

InlineAlign Not required

TBorderStyle Required if semantic

EXAMPLE: The border of a cell in
which the cell’s appearance
denotes the significance of its
content (such as distinguishing
cells in certain AT applications).

Default value: None

TPadding Not required

Any ILSE;
BLSEs
containing
ILSEs or
containing
direct or
nested
content items

LineHeight Not required

BaselineShift Required if semantic

EXAMPLE: Super or subscripts.

Default value: 0

TextDecorationColor Required

EXAMPLE: Red underline used to
indicate authorship of an edit.

© 2023 PDF Association 57

Structure
elements

Attribute Conforming usage implied by PDF/UA-1

Default value: (Current fill color in effect)

NOTE Despite the default value for
TextDecorationColor, to facilitate
access to this attribute, it is useful
to set this value in all semantic
cases.

TextDecorationThickness Required if semantic

EXAMPLE: Thick underline used to
indicate misspelling.

Default value: (Current stroke thickness in
effect)

NOTE Despite the default value for
TextDecorationThickness, to
facilitate access to this attribute, it
is useful to set this value in all
semantic cases.

TextDecorationType Required

EXAMPLE: Strikethrough.

Default value: None

RubyAlign Not required

RubyPosition Not required

GlyphOrientationVertical Required if semantic

EXAMPLE: Representation of
portrait or landscape orientation
using the letter "A".

Default value: Auto

5.1.2 Standard layout attributes specific to inline-level structure
elements

Requirements for the use of standard layout attributes (see ISO 32000-2, Tables 381, 382, 383) as
described in Table 2, “Requirements for standard layout attributes specific to inline-level structure
elements”.

© 2023 PDF Association 58

Table 2: Requirements for standard layout attributes specific to inline-level structure elements

Structure elements Attribute Conformance requirements

Grouping elements
containing columns

ColumnCount Not required

ColumnGap Not required

ColumnWidths Not required

L ListNumbering Required if the value is not None

EXAMPLE: Ordered lists.

Default value: None

PrintField Role Required

EXAMPLE: A pre-filled
(possibly flattened) form
field.

Default value: None specified

Checked, checked Required

EXAMPLE: A pre-filled
(possibly flattened) form
field.

Default value: off

Desc Required

EXAMPLE: A pre-filled
(possibly flattened) form
field.

Default value: None specified

5.2 List attributes

5.2.1 ListNumbering

ISO 32000-1 does not address the concept of continued lists (multiple list fragments with other
block level elements between fragments); semantic encoding of this construct is unavailable prior
to 32000-2.

Arbitrary labels use the value None. Accordingly, it is recommended that processors intending
conversion to HTML consider that a ListNumbering attribute value of None strongly implies use of
the contents of the <Lbl> structure elements in the list to represent the list’s labels, akin to HTML's
description lists (<dl>). An example:

<Lbl> {Day 1:}

<Lbl> {Day 2:}

© 2023 PDF Association 59

5.3 PrintField attributes
PrintField attributes define PDF's accessibility mechanism for non-interactive PDF forms (see ISO
32000-1, 12.7.9, "Non-interactive forms"). Such forms may have originally contained interactive
fields such as text fields and radio buttons but were then converted into non-interactive PDF files,
or they may have been designed to be printed out and filled in manually.

Radio buttons and list boxes are not fully accommodated in ISO 32000-1’s definition of PrintField
attributes. These attributes are entirely overhauled in ISO 32000-2.

5.4 Table attributes

5.4.1 Scope, Headers and IDs

For ordinary tables the Scope attribute is generally the easiest approach to establishing the
table’s structure. In keyboard navigation, where Scope is sufficient, right arrow = Row, down arrow
= Column

For complex table structures, including subdivisions within tables, Headers and ID attributes are
generally necessary in order to correctly represent the table’s structure by way of the Headers
entry in each TH cell enumerating the IDs of the table cells (TDs and THs) it heads.

If occurring on a TH, the Headers entry implies that the TH points to some table cells, which
allows for expression of nested hierarchies of headers. The use of Headers implies that the
enumerated cells have an ID attribute.

5.4.2 Summary attribute

It is recommended that use of this attribute be restricted to cases where visual information about
the table would not be characteristically available to assistive technology.

© 2023 PDF Association 60

Where auxiliary information or guidance would be useful to any user it is recommended that such
be provided in text, and not hidden in a Summary attribute which would only be available to
those using certain AT.

Providing a Summary is not precluded for specific target audiences, but it is recommended that
the practice be limited to such cases.

5.5 Commonly-used properties of content
PDF’s content properties may be combined to accommodate a variety of use-cases.

The four keys defining properties of content can appear in both the property list dictionary (for a
marked content sequence with a Span tag) and the structure element dictionary (for structure
elements).

Property Purpose

Lang (language) Defines the natural language of both the content and the
values of the E, Alt and ActualText properties present in the same
context.

Alt (alternate description) Provides descriptive information for content with
a substantial non-textual aspect.

ActualText (replacement text) The text representation of text that is not encoded as
text.

E (expansion of abbreviations and acronyms) Provides expanded text.

These properties are discussed in the following clauses.

5.5.1 Lang

The Lang property can be used to provide the assigned language of content. A language identifier
is a language code whose specificity (e.g., fr vs. fr-ca) may vary.

Lang exists at four levels in a PDF document:

• Document level: a Lang entry in the document’s catalog dictionary
• Logical structure level: a Lang property of a logical structure element
• Content level: a Lang property of a marked content sequence
• Text level: a Unicode escape sequence

A Lang entry in the document’s catalog dictionary establishes the default language for the entire
document, including page content, metadata and text strings within annotations.

A Lang property of a logical structure element or a marked content sequence can be used to
override the default. It applies to all child elements unless overridden by a logical structure
element or marked content sequence nested inside. Logical structure and marked content may be
nested in any fashion.

A Unicode escape sequence can be used to set the language inside any text string including entries
in annotations and Alt, ActualText and E entries. Support for Unicode escape sequences is
currently not available in existing PDF processors.

© 2023 PDF Association 61

For some XMP metadata fields of type Lang Alt (Language Alternate) it is possible to include
language-specific instances in addition to a default instance.

5.5.1.1 Example

ISO 32000-1 provides adequate examples.

5.5.1.2 Creation

Although the Contents key in annotations is unevenly supported, it is the correct means of
providing an alternate description for annotations.

Placing the same description in both the Contents key and the Alt property is not recommended,
as this can lead some implementations to present the same alternative description twice.

5.5.1.3 Consuming

Lang governs all attributes of the structure element on which it appears, and all enclosed content.
When Lang occurs at a document level (i.e., as an entry in the catalog dictionary), it serves as the
‘base language’ for the entire document, including outlines (bookmarks) and metadata, except
were overridden by a content-specific (structure element or marked content sequence) use of
Lang.

5.5.2 Alt (alternate description)

Alt provides descriptive information for content with a substantial non-textual aspect. The use of
this property depends on the visual appearance of the content; it is not a function of the data
object type used. For example, ASCII art consists of characters and yet, being a visual
representation, nonetheless requires an Alt property.

Text can be encoded as an image object. In such cases, the semantically appropriate property for
accessibility purposes is ActualText providing the text represented by the image; the Alt property
is semantically inappropriate in this case and should be not defined (See 5.5.3, “ActualText”).

5.5.2.1 Typical usage

While most commonly used on the <Figure> structure element, Alt is used with any content that is
mostly not text-based, including cases where that content consists of several distinct graphics
objects. Examples include:

• Pie charts
• Technical drawings and flow charts
• Clip-art
• Maps

5.5.2.2 Nested structures

Illustrations can include subdivisions that can be considered as individual illustrations in their own
right. and for which. In such cases an Alt property is semantically appropriate for both the main
illustration and its components. Examples include:

• Diagrams of sub-assemblies
• Building plans
• Maps including countries and states

© 2023 PDF Association 62

5.5.2.3 Creation

Although Alt is technically usable in both marked content and structure element contexts there
are few (if any) use cases in which Alt would be appropriate on marked content.

5.5.2.4 Consuming

In cases where Alt and ActualText properties both occur on the same structure element, both
must be available to the user.

5.5.3 ActualText

For this clause, the term “text content” refers to content that is visually perceived as text
regardless of the content’s actual encoding as text, image or vector objects, clipping paths, masks,
or any combination thereof.

ActualText is used for content that is normally being perceived as text but is not encoded as text.
Typical examples include a small image representing a single word, or a vector object representing
a single character. ActualText makes it possible to associate the text that would normally be
perceived by a sighted user with respective objects. By implication, this makes it possible to derive
a text-only representation of the content, e.g., for use by a screen reader, search engine or other
text-consuming technology.

This property is useful in a variety of circumstances, including:

◼ An image that represents text
◼ In certain cases, hyphenation causes characters to change (example: Drucker -> Druk-ker)
◼ As a last resort only, when other approaches are not feasible:

▪ To specify text directly (for example, to insert white space to separate words)
▪ When deciding between applying ActualText in marked content vs. a structure

element

While it is technically acceptable to use ActualText as a property of any structure element, it is
recommended to only use the ActualText property on structure elements of type , or for
Span marked content sequences.

Example A:

ActualText property is associated with a structure element:

<P> {

 { }

 he PDF format

}

© 2023 PDF Association 63

ActualText property is associated with a Span marked content sequence:

/P <</MCID 0 >> BDC

 /Span <</ActualText (T) >> BDC

 /Im1 Do

 EMC

 …

 (he PDF format) Tj

EMC

In all cases where a structure element is used, a Span marked content sequence is an
acceptable substitute.

Example B:

<TR> {

 <TD> {

 {image of a numeral '1'}

 }

 <TD> {2}

}

NOTE Widely used reading programs and ATs tend to present the first table cell in the
alternative approach as just text, ignoring the fact that it is a table cell, and thus presenting a
broken table structure.

Example C:

<P> { The German word for “printer” is:

 “Dru {

 {k-k}

 }

 er”

}

NOTE This example assumes a line-break in the middle of the word “Drucker”, which
implies that the “ck” must be written as “k-k”.

5.5.3.1 Creation

ActualText can be used on marked content sequences or on structure elements. When used on
structure elements, it is recommended that the attribute not be used on structure element types
such as <Figure>, <TH> or <TD>. When the need arises to associate content in a <Figure>, <TH> or
<TD> with ActualText, it is recommended that a structure element be added inside the
<Figure>, <TH> or <TD> structure element, and the ActualText property be associated with that
 structure element.

Although cases exist (for example, remediation) in which it may be easier to implement
ActualText on a given structure element, it’s frequently preferable to address ActualText via
marked content (e.g., automated soft hyphens).

© 2023 PDF Association 64

In cases where it isn’t possible to provide a ToUnicode table, the ActualText property is also
useful for representing Unicode for characters that do not naturally map to Unicode (for example,
bullets, or when associating a ligature with a sequence of separate characters).

Whenever possible, it is recommended that software provide text content as text objects in the
page description (including white-space characters). If this is not possible or excessively difficult,
use (in the following order):

1. ActualText on the content, or
2. ActualText on an empty structure element. It is semantically appropriate to only use this

approach for white-space characters.

When the content is already contained within a structure element, and is the complete content of
that element, then it is preferred to place ActualText on the structure element rather than on the
marked content sequence.

NOTE 1 For content exceeding short sequences of characters that cannot be encoded as text
objects in the page description (such as a scanned and OCRed page), the text can be
superimposed as text objects in render mode 3 (invisible text).

NOTE 2 Use of ActualText is limited to text that would otherwise be contained within a
single structure element.

Scanned pages

The use of either Alt or ActualText on a scanned page is almost always semantically
inappropriate. In many cases, scanned pages are overlaid with invisible text where the text
matches the position of the scanned text; these can be structured according to the rules of
PDF/UA.

As with any PDF/UA-1 conforming file, it is semantically appropriate to contain each semantically-
significant figure on the scanned page within <Figure> structure elements. This will necessitate
some means of selective inclusion of that portion of the page in the page description.

5.5.3.2 Consumption

In the (inadvisable) case of an ActualText property on a <TD> or <TH> structure element, some
popular APIs recognize an ActualText property by replacing the <TD> or <TH> structure element,
respectively, with the ActualText's property’s value. However, semantic appropriateness requires
that all semantics be retained, although the means of doing so are implementation-dependent.

5.5.4 E

PDF/UA-1 does not mandate use of the E property. However, in some cases, or for certain
audiences, the E property can be useful (e.g., for providing fully spelled-out text for an
abbreviation).

In general, it is recommended that such fully spelled-out text be contained in the document as
ordinary content in the vicinity of the abbreviation.

Example:

 {

 PDF

}

© 2023 PDF Association 65

5.5.4.1 Creation

None provided.

5.5.4.2 Consumption

It is recommended that any viewer be able to indicate the presence of an E property, and – at the
discretion of the user – present its contents.

© 2023 PDF Association 66

6 Text characteristics

6.1 Superscripts and subscripts
For text-to-speech, text customization and text repurposing applications, the superscript or
subscript aspect of characters may be critical to distinguishing the contents of a reference’s label
from the surrounding text, and for other purposes.

Tagged PDF in PDF 1.7 does not include an explicit mechanism to express superscript or subscript
semantics. Although the BaselineShift attribute may be used as a substitute, it cannot be
considered a fully reliable mechanism, as text could be shifted for other reasons.

6.2 Symbolic characters
It is semantically appropriate for consuming software to take advantage of Unicode encoding, and
be prepared to present Unicode code points beyond the predominant script or language used.
This includes, for example, mathematical symbols, ZapfDingbats, Wingdings.

Where symbolic characters (such as Wingdings glyphs) are used, use ToUnicode table entries, or
ActualText, where the ActualText would contain the appropriate Unicode. Where no Unicode
code point is available, use appropriate text conveying the meaning within an ActualText
attribute. The use of the Unicode PUA is discouraged, as no predefined meaning is associated with
Unicode values in the PUA.

Where symbolic characters are used as a figure, use the <Figure> structure element with
appropriate alternate text.

7 Other features of PDF

7.1 Digital signatures
Digital signatures in ISO 32000-1 use a few conventions that do not lend themselves well to the
tagged PDF paradigm. Accordingly, the PDF/UA requirements for digital signatures may trigger a
few questions.

For example: digital signatures are customarily not clearly “visible” or “invisible” – they are often
placed in a signature form field made functionally invisible by encoding with /Rect [0 0 0 0]. It’s
hard to know how such signatures are to be represented, or indicated in logical structure, or
indeed, whether they need to be in the logical structure. Here we offer some general principles for
handling such cases.

7.1.1 Reading order of digital signatures

Fields that are of zero size, or outside the CropBox, or are hidden are considered “invisible” and
thus do not have to be included in the structure element tree as is otherwise required for
Annotations in 7.18.

However, consistent with clause 8.6 of PDF/UA-1, conforming readers are required to provide
reasonable access to digital signatures irrespective of their visibility.

© 2023 PDF Association 67

The most appropriate way of representing invisible signatures to users with disabilities is generally
via a separate user interface, not by artificially forcing the digital signature into the logical reading
order.

7.1.2 Requirements for field appearances

Since objects within a digital signature appearance stream cannot be structured, 100%
compliance with 7.13 is impossible in cases where such appearance streams include logical
substructure (such as a <Figure>). In many cases an appropriate Alt property on the <Form>
structure element for the digital signature suffices for PDF/UA-1 conformance.

7.2 Page open options
It is recommended that highly structured and/or longer documents include outlines (ISO 32000-1,
12.3.3) and that outlines follow the headings present in the document. For documents including
outlines, it is recommended that the default view of the document displays the outline entries.

NOTE Outlines are commonly known as "bookmarks" due to longstanding viewer conventions.

8 Editing tagged PDF files
Consideration is due when merging PDF documents with different language settings, metadata, or
other features.

Deleting pages, splitting documents, inserting pages and similar operations require that structure
elements (as well as bookmarks or internal link destinations) connected with page content objects
be handled appropriately.

When inserting pages into a tagged PDF document, care must be taken to reconcile the structure
elements associated with the inserted pages with that of the target document

It is semantically appropriate to have the deletion of content result in the deletion of
corresponding structure elements.

© 2023 PDF Association 68

Annex A: The PDF/UA flag
An example of a complete PDF/UA flag:

<?xpacket begin="" id="W5M0MpCehiHzreSzNTczkc9d"?>

<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c015
91.163280, 2018/06/22-11:31:03 ">

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description rdf:about=""

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:pdfuaid="http://www.aiim.org/pdfua/ns/id/">

 <dc:title>

 <rdf:Alt>

 <rdf:li xml:lang="x-default">PDF/UA Document</rdf:li>

 <rdf:li xml:lang="en">PDF/UA Document</rdf:li>

 </rdf:Alt>

 </dc:title>

 <pdfuaid:part>1</pdfuaid:part>

 </rdf:Description>

 </rdf:RDF>

</x:xmpmeta>

<?xpacket end="w"?>

© 2023 PDF Association 69

Annex B: PDF 2.0
Although intended for implementers of PDF 1.7 and PDF/UA-1, this Annex provides limited
guidance for implementers looking forward to PDF 2.0 (ISO 32000-2) and PDF/UA-2.This Annex is
not intended as a guide to Tagged PDF syntax in PDF 2.0 and cannot be used as a substitute for ISO
32000-2 (PDF 2.0).

A.1 Differences between PDF 1.7 and PDF 2.0

The basic data model for Tagged PDF remain unchanged between PDF 1.7 and PDF 2.0. However,
there are many changes in the use of objects defined in Tagged PDF, including, but not limited to:

◼ A new namespace mechanism allows for the specification of tag sets, including sets external
to ISO 32000

◼ Introduces a new PDF 2.0 namespace:
▪ New standard structure types
▪ Certain standard structure types defined in PDF 1.7 are not present in the PDF 2.0

namespace
▪ Changed definitions for many standard structure elements
▪ Possible hierarchical relationships between standard structure elements are precisely

identified
◼ Defines the PDF 1.7 namespace:

▪ Based on the PDF 1.7 tagset defined in ISO 32000-1:2008
▪ Allows usage of PDF 1.7 elements in PDF 2.0

◼ The PDF 1.7 namespace is the default namespace for PDF 2.0 documents
◼ Introduces MathML as a first-class namespace for PDF 2.0
◼ Concepts such as artifacts, alternate descriptions and replacement text are improved
◼ New artifact types and subtypes are added
◼ Pronunciation hints may be added

A.2 Namespaces and standard structure types

Many PDF documents are authored by conversion from other formats, many of which have rich
structures and content with their own structures. the namespace mechanism introduced in PDF
2.0 allows one or more of these externally-defined namespaces to be specified as being used
within the document (see ISO 32000-2, 14.7.4.2, "Namespace dictionary").

Examples of such namespaces that might be used in a PDF file include, among others:

◼ Chemical Markup Language (CML)
◼ Standard Music Description Language (SMDL)

A.3 Investing in PDF 2.0 while supporting PDF 1.7

A.3.1 General

The PDF 1.7 tagset is fully available in PDF 2.0; rules for using PDF 1.7 tags in a PDF 2.0 context are
defined in PDF 2.0.

PDF 2.0 includes complete information on the allowable parent-child relationships between all
structure element types. Although these rules apply to PDF 2.0, they also represent best-practice
for PDF 1.7 implementations. Accordingly, it is strongly recommended that developers
implementing PDF 1.7 also avail themselves of PDF 2.0, and especially Annex L therein.

© 2023 PDF Association 70

A.3.2 Some changes in common structure element types

For those implementers considering extending their support for Tagged PDF to PDF 2.0, changes
to some standard structure element types may affect choices made when implementing Tagged
PDF according to ISO 32000-1. The set of structure element types discussed in this subclause is not
intended to be exhaustive.

A.3.2.1 <H1> – <H6>

Since headings commonly appear in Tables of Contents, and since document titles do not
normally appear in Tables of Contents, a PDF 2.0-safe approach would be to use <Title> (which is
defined in PDF 2.0) mapped to the <P> structure type. Upgrading this document to PDF 2.0,
therefore, would simply require deletion of this role map.

NOTE PDF 2.0 adds a <Title> structure type for the purpose of tagging document titles, and
so this guidance will change substantially for PDF 2.0 and PDF/UA-2. This implies that a
document prepared for conformance with PDF/UA-1 will be difficult to convert to PDF/UA-2 if
<H1> is used for the document’s title. If a <Title> structure element encloses the title content as
a custom structure element, role-mapped to <P>, then conversion to PDF/UA-2 can be achieved
by simply removing the role-mapping.

A.3.2.2 <Caption>

PDF 2.0 updates the description of <Caption> as follows:

For lists and tables, a <Caption< structure element may be used as defined for the <L> (list)
and <Table> structure elements. In addition, a <Caption> may be used for a structure
element or several structure elements.

A structure element is understood to be "captioned" when a <Caption> structure element
exists as an immediate child of that structure element. The <Caption> shall be the first or
the last structure element inside its parent structure element. The number of captions
cannot exceed 1.

While captions are often used with figures or formulas, they may be associated with any
type of content.

A.3.2.3 <Note> and <Reference>

PDF 2.0 makes it possible to explicitly associate references with notes via the new Ref key in the
structure element dictionary. Additionally, structure destinations on link annotations are also
possible in PDF 2.0.

Although the standard structure namespace for PDF 2.0 does not define a <Reference> standard
structure element, PDF 2.0 readers supporting Tagged PDF are required to support the PDF 1.7
structure element set as the default namespace.

By combining the <Reference> structure element with the Ref key introduced in PDF 2.0 it is
possible to create hybrid elements that work in both standard structure namespaces defined in
PDF 2.0.

© 2023 PDF Association 71

Bibliography
PDF/UA-1 Technical Implementation Guide: Understanding ISO 14289-1 (PDF/UA-1)
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Technical-Implementation-Guide

PDF/UA-1 Technical Implementation Guide: Understanding ISO 32000-1 (PDF 1.7)
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Technical-Implementation-Guide-32000-1

Achieving WCAG 2.0 with PDF/UA
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Achieving_WCAG

The Matterhorn Protocol, 2022, PDF Association
https://www.pdfa.org/community/pdf-ua-technical-working-group/

PDF/UA Reference Suite, 2022, PDF Association
https://www.pdfa.org/community/pdf-ua-technical-working-group/

http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Technical-Implementation-Guide
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Technical-Implementation-Guide-32000-1
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Achieving_WCAG
https://www.pdfa.org/community/pdf-ua-technical-working-group/
https://www.pdfa.org/community/pdf-ua-technical-working-group/

	Table of Contents
	1 Background
	1.1 Use of the term “tagged PDF”
	1.2 Document history

	2 Introduction
	2.1 About PDF/UA (Universal Accessibility)
	2.2 Accessibility vs. reuse
	2.3 What this Guide is not
	2.4 Syntax guidance vs. tagging guidance
	2.5 Looking towards PDF 2.0 and PDF/UA-2
	2.6 Use of normative language
	2.7 Notation

	3 General provisions
	3.1 Scope
	3.2 Fundamentals
	3.2.1 Semantic appropriateness
	3.2.2 Reading order
	3.2.3 Mapping text to Unicode

	3.3 Document level attributes
	3.4 Content that spans pages
	3.5 Empty structure elements
	3.6 Role maps
	3.7 Artifacts
	3.7.1 Header and footer content
	3.7.2 Page numbers

	4 Guidance for the standard structure types
	4.1 Grouping elements
	4.1.1 <Part>, <Art>, <Sect>, <Div>
	4.1.1.1 Example
	4.1.1.2 Creation
	4.1.1.3 Consumption

	4.1.2 <BlockQuote>
	4.1.2.1 Examples
	4.1.2.2 Creation
	4.1.2.3 Consumption

	4.1.3 <Caption>
	4.1.3.1 Examples
	4.1.3.2 Creation
	4.1.3.3 Consumption

	4.1.4 <TOC> (table of contents) / <TOCI> (Table of contents item)
	4.1.4.1 Examples
	4.1.4.2 Links
	4.1.4.3 Creation
	4.1.4.4 Consumption

	4.1.5 <Index>
	4.1.5.1 Examples
	4.1.5.2 Creation
	4.1.5.3 Consumption

	4.1.6 <NonStruct>
	4.1.6.1 Examples
	4.1.6.2 Creation
	4.1.6.3 Consumption

	4.1.7 <Private>
	4.1.7.1 Examples
	4.1.7.2 Creation
	4.1.7.3 Consumption

	4.2 Block level structure element types
	4.2.1 <P> (paragraph)
	4.2.1.1 Example
	4.2.1.2 Creation
	4.2.1.3 Consumption

	4.2.2 <H1>—<H6> (headings)
	4.2.2.1 Examples
	4.2.2.2 Talking about titles
	4.2.2.3 Sidebars
	4.2.2.4 Examples
	4.2.2.5 Creation
	4.2.2.6 Consumption

	4.2.3 <H> (heading, strongly structured)
	4.2.3.1 Examples
	4.2.3.2 Creation
	4.2.3.3 Consumption

	4.2.4 <Lbl>
	4.2.4.1 Examples
	4.2.4.2 Creation
	4.2.4.3 Consumption

	4.2.5 <L> (List), (List Item), <LBody> (List Body)
	4.2.5.1 Examples
	4.2.5.2 Creation
	4.2.5.3 Consumption

	4.2.6 <Table>, <TR>, <TH>, <TD>, <THead>, <TBody>, <TFoot>
	4.2.6.1 Examples
	4.2.6.2 Creation
	4.2.6.3 Consumption

	4.2.7
	4.2.7.1 Examples
	4.2.7.2 Creation
	4.2.7.3 Consumption

	4.2.8 <Note>
	4.2.8.1 Examples
	4.2.8.2 Semantics of supplemental or explanatory content “notes”
	4.2.8.3 Creation
	4.2.8.4 Consumption

	4.2.9 <Reference>
	4.2.9.1 Examples
	4.2.9.2 Creation
	4.2.9.3 Consumption
	<Link> within <Reference>

	4.2.10 <BibEntry>
	4.2.10.1 Examples
	4.2.10.2 Creation
	4.2.10.3 Consumption

	4.2.11 <Code>
	4.2.11.1 Examples
	4.2.11.2 Creation
	4.2.11.3 Consuming

	4.2.12 <Link>
	4.2.12.1 Examples
	4.2.12.2 Creation
	Multiple link annotations enclosed in a single <Link> structure element
	The Contents key

	4.2.12.3 Consumption

	4.2.13 <Annot>
	4.2.13.1 Examples
	4.2.13.2 Creation
	4.2.13.3 Consumption

	4.2.14 <Quote>
	4.2.14.1 Examples
	4.2.14.2 Creation
	4.2.14.3 Consumption

	4.2.15 <Ruby>, <RB>, <RT>, <RP>, <Warichu>, <WT>, <WP>

	4.3 Illustration elements
	4.3.1 <Figure>
	4.3.1.1 Examples
	4.3.1.2 Creation
	4.3.1.3 Consumption

	4.3.2 <Formula>
	4.3.2.1 Examples
	4.3.2.2 Creation
	4.3.2.3 Consumption

	4.3.3 <Form>
	4.3.3.1 Form fields vs. widget annotations
	4.3.3.2 Labeling form fields
	4.3.3.3 Radio button form fields
	The Opt entry

	4.3.3.4 Creation
	4.3.3.5 Consumption
	How to find out the meaning of each radio button
	How to get the current value of the current radio button form field

	5 Attributes and properties
	5.1 Layout attributes
	5.1.1 Standard layout attributes
	5.1.2 Standard layout attributes specific to inline-level structure elements

	5.2 List attributes
	5.2.1 ListNumbering

	5.3 PrintField attributes
	5.4 Table attributes
	5.4.1 Scope, Headers and IDs
	5.4.2 Summary attribute

	5.5 Commonly-used properties of content
	5.5.1 Lang
	5.5.1.1 Example
	5.5.1.2 Creation
	5.5.1.3 Consuming

	5.5.2 Alt (alternate description)
	5.5.2.1 Typical usage
	5.5.2.2 Nested structures
	5.5.2.3 Creation
	5.5.2.4 Consuming

	5.5.3 ActualText
	5.5.3.1 Creation
	Scanned pages

	5.5.3.2 Consumption

	5.5.4 E
	5.5.4.1 Creation
	5.5.4.2 Consumption

	6 Text characteristics
	6.1 Superscripts and subscripts
	6.2 Symbolic characters

	7 Other features of PDF
	7.1 Digital signatures
	7.1.1 Reading order of digital signatures
	7.1.2 Requirements for field appearances

	7.2 Page open options

	8 Editing tagged PDF files
	Annex A: The PDF/UA flag
	Annex B: PDF 2.0
	A.1 Differences between PDF 1.7 and PDF 2.0
	A.2 Namespaces and standard structure types
	A.3 Investing in PDF 2.0 while supporting PDF 1.7
	A.3.1 General
	A.3.2 Some changes in common structure element types
	A.3.2.1 <H1> – <H6>
	A.3.2.2 <Caption>
	A.3.2.3 <Note> and <Reference>

	Bibliography

